Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7445893

Genetic, evolutionary and plant breeding insights from the domestication of maize

The natural history of maize began nine thousand years ago when Mexican farmers started to collect the seeds of the wild grass, teosinte. Invaluable as a food source, maize permeated Mexican culture and religion. Its domestication eventually led to its adoption as a model organism, aided in large part by its large chromosomes, ease of pollination and growing agricultural importance. Genome comparisons between varieties of maize, teosinte and other grasses are beginning to identify the genes responsible for the domestication of modern maize and are also providing ideas for the breeding of more hardy varieties.

The natural history of maize began nine thousand years ago when Mexican farmers started to collect the seeds of the wild grass, teosinte. Invaluable as a food source, maize permeated Mexican culture and religion. Its domestication eventually led to its adoption as a model organism, aided in large part by its large chromosomes, ease of pollination and growing agricultural importance. Genome comparisons between varieties of maize, teosinte and other grasses are beginning to identify the genes responsible for the domestication of modern maize and are also providing ideas for the breeding of more hardy varieties. - See more at: http://elifesciences.org/content/4/e05861#.dpuf

The natural history of maize began nine thousand years ago when Mexican farmers started to collect the seeds of the wild grass, teosinte. Invaluable as a food source, maize permeated Mexican culture and religion. Its domestication eventually led to its adoption as a model organism, aided in large part by its large chromosomes, ease of pollination and growing agricultural importance. Genome comparisons between varieties of maize, teosinte and other grasses are beginning to identify the genes responsible for the domestication of modern maize and are also providing ideas for the breeding of more hardy varieties.

As one of the world's most important crops, maize (corn) needs little introduction. What is less well appreciated is the story of its remarkable transformation (Figure 1). Genetic data point to the tropical Balsas river valley in Mexico as the site where maize (Zea mays ssp. mays) was domesticated from teosinte (Zea mays ssp. parviglumis) (Matsuoka et al., 2002; van Heerwaarden et al., 2011). Archeological data support this location and also suggest that squash may have been domesticated at the same time (Piperno et al., 2009). Some think maize was first collected for the fermentable sugars in its stalk (Iltis, 2000; Smalley and Blake, 2003), but more likely it was for the storable starch in its seed.

 

The word teosinte is derived from ‘teocintli’—‘teotl’ meaning sacred and ‘cintli’ meaning dried ear of corn—from the indigenous Nahuatl language. We use the word teosinte to refer to all the wild species of Zea that are native to Mexico and Central America. Teosinte sows its seeds widely. In addition to dispersing pollen in the wind, the kernels fall from the plant and, if eaten, are carried to other locations in fecal matter, thanks to the indigestible fruitcase (see Box 1 for a glossary of specialist terms used in this article). The domestication of maize kept the wind-born pollen of teosinte, but changed other traits, improving its utility for human consumption (Doebley, 2004). The teosinte fruitcase, full of silica and lignin, became softer (Figure 1C), allowing humans to grind its kernels for food. The branch holding the kernels (cob) grew in girth, increasing the kernel row number from 2 to 20, or more (Figure 1D). Kernels no longer self-dispersed but were held tight on the cob, requiring the intervention of humans to sow seeds. Finally, the long branches shortened, but kept the leaves along the branch. These ‘husk leaves’ keep birds, insects and other pests from eating the kernels.

 

See more at: http://elifesciences.org/content/4/e05861#.dpuf

Trở lại      In      Số lần xem: 816

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD