Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  14
 Total visitors :  7449231

Tolerance to ozone might impose restrictions to plant disease management in tomato

Tropospheric ozone (O3) is considered a major air pollutant having negative effects on plant growth and productivity. Background concentrations are expected to rise in several regions of the world in the next 50 years, affecting plant responses to diseases, thus requiring new management strategies for food production. The effects of elevated O3 on the severity of a bacterial disease, and the effectiveness of a chemical defence inducer, were examined in two cultivars of tomato

AM. Romero, A. I. Menéndez , A. M. Folcia , M. A. Martínez‐Ghersa ,

Plant Biology; First published: 09 September 2019; https://doi.org/10.1111/plb.13041

ABSTRACT

Tropospheric ozone (O3) is considered a major air pollutant having negative effects on plant growth and productivity. Background concentrations are expected to rise in several regions of the world in the next 50 years, affecting plant responses to diseases, thus requiring new management strategies for food production.

 

The effects of elevated O3 on the severity of a bacterial disease, and the effectiveness of a chemical defence inducer, were examined in two cultivars of tomato, Roma and Moneymaker, which present different tolerance to this pollutant. The two cultivars differ in their ability to produce and accumulate reactive oxygen species (ROS) in leaf tissues. Tomato plants were challenged with a strain of Xanthomonas vesicatoria, Xv9, which is pathogenic on tomato.

 

Ozone consistently increased severity of the disease by over 40% in both cultivars. In the more tolerant cultivar, O3 pollution increased disease intensity, even after applying a commercially available product to enhance resistance (acibenzolar‐S‐methyl, BTH). In the more susceptible cultivar, level of disease attained depended on the oxidative balance that resulted from other stress factors.

 

The antioxidant capacity of the plant at the time of infection was relevant for controlling development of the disease. Our results suggest that development of O3 tolerance in commercial crops might impose a penalty cost in terms of disease management under projected higher O3 concentrations.

 

See https://onlinelibrary.wiley.com/doi/pdf/10.1111/plb.13041#accessDenialLayout

Trở lại      In      Số lần xem: 268

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD