Chào mừng Quý độc giả đến với trang thông tin điện tử của Viện Khoa học Kỹ thuật Nông nghiệp miền Nam

Tin nổi bật
Thành tích

Huân chương Ðộc lập

- Hạng 1 - Hạng 2 - Hạng 3

Huân chương Lao động

- Hạng 1 - Hạng 2 - Hạng 3

Giải thưởng Nhà nước

- Nghiên cứu dinh dưởng và thức ăn gia súc (2005)

- Nghiên cứu chọn tạo và phát triển giống lúa mới cho xuất khẩu và tiêu dùng nội địa (2005)

Giải thưởng VIFOTEC

- Giống ngô lai đơn V2002 (2003)

- Kỹ thuật ghép cà chua chống bệnh héo rũ vi khuẩn (2005)

- Giống Sắn KM 140 (2010)

Trung tâm
Liên kết website
lịch việt
Thư viện ảnh
Video
Triển vọng giống đậu nành HLĐN910 trên đất trồng tiêu

Thống kê truy cập
 Đang trực tuyến :  15
 Số lượt truy cập :  24283922
Tìm ra công thức sản xuất protein nhân tạo
Chủ nhật, 09-08-2020 | 06:32:24

Thông qua xây dựng các mô hình học máy (machine learning) có thể rà soát thông tin protein được chọn ra từ cơ sở dữ liệu bộ gene, các nhà nghiên cứu đã tìm ra các quy tắc thiết kế tương đối đơn giản để sản xuất protein nhân tạo với phản ứng hóa học không kém protein trong tự nhiên.

 

Hình minh họa. Nguồn: Unsplash/CC0 Public Domain
 
Protein đóng vai trò thiết yếu đối với sự sống của tế bào, đảm nhận các nhiệm vụ phức tạp và làm xúc tác cho các phản ứng hóa học. Lâu nay, các nhà khoa học và kỹ sư luôn tìm cách khai thác khả năng này của protein bằng cách tạo ra các protein nhân tạo có thể thực hiện nhiều nhiệm vụ mới, chẳng hạn như chữa bệnh, hấp thụ carbon hoặc thu gom năng lượng. Tuy nhiên, các quy trình tạo ra protein nhân tạo trên thường tốn thời gian và phức tạp, tỷ lệ thất bại cao.
 
Mới đây, nhóm nghiên cứu đến từ Trường Kỹ thuật Phân tử Pritzker (PME), Đại học Chicago đã có đột phá mới khi phát triển một quy trình vận hành bởi trí tuệ nhân tạo sử dụng dữ liệu lớn để thiết kế các loại protein mới.
Thông qua xây dựng các mô hình học máy (machine learning) có thể rà soát thông tin protein được chọn ra từ cơ sở dữ liệu bộ gene, các nhà nghiên cứu đã tìm ra các quy tắc thiết kế tương đối đơn giản để sản xuất protein nhân tạo với phản ứng hóa học không kém protein trong tự nhiên.
 
Hai nhà nghiên cứu Rama Ranganathan và Joseph Regenstein cho biết: “Chúng tôi đã luôn tò mò làm cách nào mà một quá trình như tiến hóa lại có thể tạo ra loại vật liệu có hiệu suất cao như protein. Chúng tôi đã phát hiện ra rằng dữ liệu bộ gene chứa lượng thông tin khổng lồ về các nguyên tắc cơ bản của cấu trúc và chức năng protein. Đến nay, chúng tôi đã có thể chắt lọc các quy luật của tự nhiên để tự mình tạo ra protein”.
 
Học các nguyên tắc thiết kế protein bằng trí tuệ nhân tạo
 
Protein được cấu thành từ hàng trăm hoặc hàng ngàn axit amin. Các chuỗi axit amin này xác định cấu trúc và chức năng của protein. Tuy nhiên, chỉ riêng việc hiểu được cách hình thành những chuỗi này để tạo ra các protein mới đã rất khó khăn. Dù những nỗ lực nghiên cứu trước đó đã tạo ra các phương thức xác định cấu trúc protein, song việc nắm bắt được chức năng của chúng thì khó hơn vậy.
 
Với phát hiện về cơ sở dữ liệu bộ gene, ông Ranganathan và các cộng sự đã phát triển các mô hình toán học dựa trên các dữ liệu này và sử dụng các phương pháp machine learning nhằm tìm ra thông tin mới về các quy tắc thiết kế protein cơ bản. Nghiên cứu được thực hiện trên họ enzym chuyển hóa chorismate mutase - loại protein quan trọng đối với sự tồn tại của nhiều loại vi khuẩn, nấm và thực vật.
 
Mô hình này cho thấy chỉ riêng việc bảo toàn vị trí axit amin và mối tương quan trong quá trình phát triển các cặp axit amin là đã đủ để dự báo các chuỗi nhân tạo mới có đặc điểm của họ protein đó.
 
Sau đó, nhóm nghiên cứu đã tạo ra các gene tổng hợp để mã hóa các protein này, nhân bản chúng vào trong vi khuẩn và theo dõi vi khuẩn tạo protein tổng hợp bằng bộ máy tế bào thông thường. Các protein nhân tạo có chức năng xúc tác tương tự như các protein mutase chorismate tự nhiên.
 
Từ nguyên tắc thiết kế protein tương đối đơn giản nên các nhà nghiên cứu có thể tạo ra một số lượng protein nhân tạo cực lớn. Nhờ khó khăn “nhỏ hơn nhiều so với tưởng tượng”, ông Ranganathan tin rằng cách tiếp cận tương tự có thể giúp họ tìm ra các mô hình thiết kế trong các hệ thống sinh học phức tạp hơn, như hệ sinh thái hoặc não bộ chẳng hạn.
 
Dù đã có được nguyên tắc thiết kế protein nhân tạo nhờ AI, các nhà nghiên cứu vẫn chưa hoàn toàn hiểu điều gì khiến mô hình này hoạt động. Trong thời gian tới, nhóm sẽ đi vào tìm hiểu vấn đề này. Các nhà khoa học hy vọng ứng dụng nền tảng này để tạo ra các protein giúp giải quyết các vấn đề nhức nhối trong xã hội, ví dụ như biến đổi khí hậu.
 
Ông Ranganathan và Phó Giáo sư Andrew Ferguson đã thành lập công ty mang tên Evozyne nhằm thương mại hóa công nghệ mới với các ứng dụng trong lĩnh vực năng lượng, môi trường, xúc tác và nông nghiệp.
 
Nguồn:https://phys.org/news/2020-07-machine-reveals-recipe-artificial-proteins.html
 
Trở lại      In      Số lần xem: 59

[ Tin tức liên quan ]___________________________________________________
  • Hơn 120 quốc gia ký kết Hiệp ước Paris về biến đổi khí hậu
  • Một số giống đậu tương mới và mô hình chuyển đổi cơ cấu cây trồng trên đất lúa tại Đông Nam Bộ và Đồng Bằng Sông Cửu Long
  • Các nước cam kết chống biến đổi khí hậu
  • 12 giống hoa được công nhận bản quyền
  • Thảo luận việc quản lý nước theo cơ chế thị trường
  • Lượng nước ngầm trên Trái đất đạt 23 triệu kilômét khối
  • Sản xuất hồ tiêu thế giới: Hiện trạng và Triển vọng
  • Triển vọng tích cực cho nguồn cung ngũ cốc toàn cầu năm 2016
  • Cây trồng biến đổi gen với hai tỷ ha (1996-2015); nông dân hưởng lợi >150 tỷ usd trong 20 năm qua
  • Cơ hội cho gạo Việt
  • Việt Nam sẽ áp dụng cam kết TPP cho thêm 40 nước
  • El Nino có thể chấm dứt vào cuối tháng 6
  • Chi phí-hiệu quả của các chương trình bệnh động vật "không rõ ràng"
  • Xuất khẩu hồ tiêu: Gậy ông đập lưng ông
  • Đất có thể đóng vai trò quan trọng trong việc giảm lượng khí nhà kính
  • Quản lý và phát triển thương hiệu gạo Việt Nam
  • Những cách nổi bật để giải quyết những thách thức về hệ thống lương thực toàn cầu
  • Lập bản đồ các hộ nông dân trồng trọt trên toàn thế giới
  • Hỗ trợ chuyển đổi từ trồng lúa sang trồng ngô
  • Nếu không được kiểm soát, cỏ dại sẽ gây thiệt hại kinh tế tới hàng tỷ USD mỗi năm
Designed & Powered by WEBSO CO.,LTD