Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  8519491

A single-nucleotide insertion in Rxp confers durable resistance to bacterial pustule in soybean
Saturday, 2024/10/26 | 06:45:33

Figure: Soybean Xanthomonas axonopodis pv. glycines.

 

Fumio Taguchi-ShiobaraKoji TakahashiRyoichi YanoRintaro SuzukiYuko YokotaToshimasa YamazakiT

etsuya YamadaTakashi SayamaNaohiro YamadaNobuhiko OkiToyoaki AnaiAkito Kaga & Masao Ishimoto

Theoretical and Applied Genetics; October 23 2024; vol.13y7; article 254

Key message

The soybean Rxp gene, encoding a bHLH transcription factor and an ACT-like domain, has an rxp allele producing a truncated protein that confers resistance to pustule-causing Xanthomonas axonopodis pv. glycines.

Abstract

In soybean, bacterial pustules caused by Xanthomonas axonopodis pv. glycines lead to premature defoliation and decreased yield in warm, wet climates. In the USA, approximately 70 years ago, bacterial pustules were eliminated by introducing a recessive resistance allele, rxp, of the Rxp gene, representing the first example of successful soybean breeding for durable disease resistance in North America. In this study, we isolated this historical Rxp gene from resistant soybean varieties using positional cloning. The 1.06 Mb region where Rxp was reported to reside was narrowed down to an 11.1 kb region containing a single gene, Glyma.17g090500. The resistance allele, rxp, contains a T insertion. A complementation test of the Rxp allele in resistant plants confirmed the identification of the Rxp gene. The product of the susceptible wild-type allele, Rxp, is presumed to be a basic helix–loop–helix (bHLH) transcription factor with an aspartate kinase, chorismate mutase, and TyrA (ACT)–like domain. This gene was mainly expressed in extended leaves, and its homologs were identified to be distributed in angiosperms. A total of six alleles were obtained: four from spontaneous variation, including the wild-type and three mutant alleles that encoded truncated proteins, and two from ethyl methanesulfonate mutants, including an allele that encoded a truncated protein and a missense allele. By evaluating the resistance of these six alleles, we found that the loss of function of RXP decreased the bacterial pustule lesions. This study provides important insights into the soybean rxp allele, which confers durable resistance to bacterial pustules.

 

See https://link.springer.com/article/10.1007/s00122-024-04743-5

Back      Print      View: 160

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD