Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  8517653

AcMYB266, a key regulator of the red coloration in pineapple peel: a case of subfunctionalization in tandem duplicated genes
Monday, 2024/08/05 | 08:21:12

Wei Zhang, Jing Wu, Junhu He, Chaoyang Liu, Wen Yi, Jingyao Xie, Ya Wu, Tao Xie, Jun Ma, Ziqin Zhong, Mingzhe Yang, Chengjie Chen, Aiping Luan2, and Yehua He.

Horticulture Research; 2024, 11: uhae116; https://doi.org/10.1093/hr/uhae116

 

Abstract

 

Red fruit peel is an attractive target for pineapple breeding. Various pineapple accessions with distinct red coloration patterns exist; however, the precise molecular mechanism accounting for these differences remains unknown, which hinders the pineapple breeding process from combining high fruit quality with red peel. In this study, we characterized a transcription factor, AcMYB266, which is preferentially expressed in pineapple peel and positively regulates anthocyanin accumulation. Transgenic pineapple, Arabidopsis, and tobacco plants overexpressing AcMYB266 exhibited significant anthocyanin accumulation. Conversely, transient silencing of this gene led to decreased anthocyanin accumulation in pineapple red bracts. In-depth analysis indicated that variations of AcMYB266 sequences in the promoter instead of the protein-coding region seem to contribute to different red coloration patterns in peels of three representative pineapple varieties. In addition, we found that AcMYB266 was located in a cluster of four MYB genes exclusive to and conserved in Ananas species. Of this cluster, each was proved to regulate anthocyanin synthesis in different pineapple tissues, illustrating an interesting case of gene subfunctionalization after tandem duplication. In summary, we have characterized AcMYB266 as a key regulator of pineapple red fruit peel and identified an MYB cluster whose members were subfunctionalized to specifically regulate the red coloration of different pineapple tissues. The present study will assist in establishing a theoretical mechanism for pineapple breeding for red fruit peel and provide an interesting case for the investigation of gene subfunctionalization in plants.

 

See https://academic.oup.com/hr/article/11/6/uhae116/7658420?login=false

 

Figure 1. AcMYB266 is preferentially expressed in pineapple peel. A Expression pattern of 89 R2R3–MYB transcription factors in different pineapple tissues. FPKM values of genes are scaled individually from 0 to 1. Red color denotes high expression levels. B RT–qPCR verification of AcMYB266 expression levels in different tissues. Error bars indicate the standard deviation from three biological replicates per group. Significant differences (P < 0.05, t-test) are indicated by different letters above the columns. C Bubble plot visualizing expression levels of AcMYB266 in various tissues of ‘SW’. Larger circle size denotes higher expression levels while cross lines in the circle denote undetectable expression levels.

 

Back      Print      View: 153

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD