Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  9
 Total visitors :  8285120

Analytical prediction of genetic contribution across multiple recurrent backcrossing generations
Wednesday, 2024/12/04 | 08:12:33

Temitayo Ajayi, Jason LaCombeGüven Ince & Trevor Yeats

Theoretical and Applied Genetics; 30 November 2024; vol.137; article 279

Key message

We derive formulas for the residual donor genome content during trait introgression via recurrent backcrossing and use these formulas to predict (without simulation) residual donor genome content for five future generations.

Abstract

Trait introgression is a common method for introducing valuable genes or alleles into breeding populations and inbred cultivars. The particular breeding scheme is usually designed to maximize the genetic similarity of the converted lines to the recurrent parent while minimizing cost and time to recover the near isogenic lines. Key variables include the number of generations and crosses and how to apply genotyping and selection. One form of trait introgression, which is our focus, involves an initial cross of an elite, homozygous recurrent parent line with a non-recurrent, homozygous donor line. The descendants of this cross are backcrossed with the recurrent parent for several generation before self-pollination in the final generation to recover lines with the alleles of interest. In this paper, we derive analytical formulas that characterize the stochastic nature of residual donor genome content during this form of trait introgression. The development of these formulas expands the mathematical methods one can integrate into breeding design. In particular, we show we can use our formulas in a novel mathematical program to allocate resources to optimize the reduction of residual donor genome content.

 

See https://link.springer.com/article/10.1007/s00122-024-04774-y

 

Back      Print      View: 56

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD