Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  18
 Total visitors :  8881261

Breeding for brown plant hopper resistance in rice: recent updates and future perspectives
Monday, 2024/12/16 | 08:01:22

Muthukumarasamy SriramSwaminathan ManonmaniChellapan GopalakrishnanVenugopal SheelaAravindan ShanmugamK M Revanna SwamyRamalingam Sures

Mol Biol Rep.; 2024 Oct 4; 51(1):1038. doi: 10.1007/s11033-024-09966-9.

Abstract

Rice yield is often threatened by various stresses caused by biotic and abiotic agents. Many biotic stress factors are known to cause crop growth and yield from seedling to maturity. The brown plant hopper (BPH) can potentially reduce the rice yield to an extent of up to 80%. Intensive research efforts in 1972 led to a better understanding of pathogens/insect and host-plant resistance. This resulted in the identification of about 70 BPH-resistant genes and quantitative trait loci (QTLs) from diversified sources including wild germplasm. However, the BPH-resistant improved varieties with a single resistant gene lose the effectiveness of the gene because of the evolution of new biotypes. This review inferred that the level of resistance durable when incorporating multiple 'R' gene combinations when compared to a single gene. Breeding tools like wide hybridization, biparental crosses, marker-assisted introgression, pyramiding, and genetic engineering have been widely employed to breed rice varieties with single or combination of 'R' genes conferring durable resistance to BPH. Many other genes like receptor-like kinase genes, transcriptional factors, etc., were also found to be involved in the resistant mechanisms of 'R' genes. Due to this, the durability of the resistance can be improved and the level of resistance of the 'R' genes can be increased by adopting newer breeding tools like genome editing which hold promise to develop rice varieties with stable resistance.

 

See https://pubmed.ncbi.nlm.nih.gov/39365503/

 

Back      Print      View: 206

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD