Independence Award
- First Rank - Second Rank - Third Rank
Labour Award
- First Rank - Second Rank -Third Rank
National Award
- Study on food stuff for animal(2005)
- Study on rice breeding for export and domestic consumption(2005)
VIFOTEC Award
- Hybrid Maize by Single Cross V2002 (2003)
- Tomato Grafting to Manage Ralstonia Disease(2005)
- Cassava variety KM140(2010)
![]() |
|
![]() |
|
Design of CoQ10 crops based on evolutionary history
Tuesday, 2025/03/04 | 08:09:29
|
||||||||||||||||||||||||||||||||||||||||
Jing-Jing Xu, Yuan Lei, Xiao-Fan Zhang, Jian-Xu Li, Qiupeng Lin, Xiang-Dong Wu, Yu-Guo Jiang, Wenyi Zhang, Cell; February 13, 2025, Open Access SummaryCoenzyme Q (CoQ) is essential for energy production by mitochondrial respiration, and it is a supplement most often used to promote cardiovascular health. Humans make CoQ10, but cereals and some vegetable/fruit crops synthesize CoQ9 with a side chain of nine isoprene units. Engineering CoQ10 production in crops would benefit human health, but this is hindered by the fact that the specific residues of the enzyme Coq1 that control chain length are unknown. Based on an extensive investigation of the distribution of CoQ9 and CoQ10 in land plants and the associated Coq1 sequence variation, we identified key amino acid changes at the base of the Coq1 catalytic pocket that occurred independently in multiple angiosperm lineages and repeatedly drove CoQ9 formation. Guided by this knowledge, we used gene editing to modify the native Coq1 genes of rice and wheat to produce CoQ10, paving the way for developing additional dietary sources of CoQ10.
See https://www.cell.com/cell/fulltext/S00927X%3Fshowall%3Dtrue
Figure 1: Distribution of CoQ9 and CoQ10, and associated Coq1 amino acid residues, in land plants
|
||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() |
||||||||||||||||||||||||||||||||||||||||
[ Other News ]___________________________________________________
|