Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  2
 Total visitors :  8650299

Exploring resistance mechanisms and identifying QTLs for brown planthopper in tropical and subtropical rice (Oryza sativa L.) germplasm
Saturday, 2025/02/22 | 06:49:06

Fugang HuangZongqiong ZhangShuolei LiaoJuan ShenLanzhi LongJingying LiXiaohui Zhong
Zuyu LiaoBaiyi LuFahuo LiZhe JiangLing ChengCaixian WangXiuzhong XiaXinghai Yang
Hui GuoBaoxuan NongDanting Li & Yongfu Qiu

Theoretical and Applied Genetics; February 20 2025; vol.138; article 49

Key message

A total of 4006 tropical and subtropical rice germplasms were screened for brown planthopper resistance, and the resistance mechanisms of 63 highly resistant accessions were characterized. This led to the designation of three novel resistance QTLs: Bph47Bph48, and Bph49.

Abstract

The brown planthopper (BPH) is a significant piercing-sucking pest of rice plants that causes widespread destruction globally. Discovering new germplasms and genes for BPH resistance is essential for enhancing genetic diversity in rice breeding. In this study, 4006 rice accessions from tropical and subtropical regions were screened for BPH resistance at the seedling stage, and 63 accessions with high-resistant were identified. Of these, 59 accessions exhibited high resistance to BPH at the adult stage. The 63 accessions displayed widespread variation in key agronomic traits, though most were generally unsatisfactory. Assessments of antixenosis, antibiosis, and tolerance indicated diverse resistance mechanisms in the 63 accessions, with the majority (39/63) demonstrating both antixenosis and antibiosis. Microscopic observations and physiological assessments revealed significant differences in vascular bundle structure, fiber content, and activity of defense-related enzymes between the 63 high-resistance and 27 susceptible ones. Furthermore, correlation analysis highlighted a substantial positive relationship between BPH resistance and parameters such as rice trypsin inhibitor (RTI) levels and width of the sclerenchyma layer (WSL). Genetic analysis of F2:3 segregating populations from four resistant accessions crossed with the susceptible rice variety 9311 identified three novel major-effect quantitative-trait loci (QTLs) located on chromosome 1L (690 kb and 1.84 Mb) and 5S (295 kb). This study significantly enriched the BPH-resistant germplasm sources and genes, highlighting the varied resistance mechanisms of rice against BPH.

 

See https://link.springer.com/article/10.1007/s00122-025-04839-6

Back      Print      View: 86

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD