Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  4
 Total visitors :  8693318

Field performance and nitrous oxide emissions of transgenic nitrogen use efficient rice lines cultivated in tropical paddy fields
Monday, 2024/09/30 | 08:31:50

Atmitri SisharminiAnicetus WihardjakaWening EnggariniAniversari AprianaAris Hairmansis & Bahagiawati Amirhusin

Transgenic Research; Published: 13 September 2024

Abstract

Nitrogen (N) fertilizers make up the majority of the input used in rice production, and their excess application leads to significant environmental pollution. Developing rice varieties with improved nitrogen use efficiency (NUE) is essential to maintain the sustainability of rice production. This study aims to evaluate the performance of transgenic Oryza sativa japonica cv. Kitaake expressing the barley (Hordeum vulgare) alanine aminotransferase (HvAlaAT) gene in response to different levels of N fertilizer application under tropical paddy field conditions. Results from this study demonstrate that transgenic nitrogen use efficient Kitaake rice (Kitaake NUE) displays a grain yield increase of up to 41% compared to Kitaake null. Transgenic Kitaake NUE expressing the HvAlaAT gene displays a higher N uptake and achieves a higher nitrogen use efficiency compared to control plants while maintaining lower nitrous oxide (N2O) fluxes. The reduction in N2O emissions in Kitaake NUE compared to Kitaake null ranges from 37.5 to 96.3%. The transgenic Kitaake NUE used in this study has potential as a donor to improve the nitrogen use efficiency of indica rice for better adaptability to tropical conditions.

 

See https://link.springer.com/article/10.1007/s11248-024-00410-z

Back      Print      View: 249

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD