Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  9
 Total visitors :  8284966

Fine mapping and functional validation of the candidate gene BhGA2ox3 for fruit pedicel length in wax gourd (Benincasa hispida)
Monday, 2024/11/25 | 08:13:52

Yan DengPeng WangWenhui BaiZhihao ChenZhikui ChengLiwen SuXianglei ChenYeshun BiRongjin Feng & Zhengguo Liu

Theoretical and Applied Genetics; November 18 2024; vol. 137; article 272

Key message

The gene regulating fruit pedicel length in wax gourd was finely mapped to a 211 kb region on chromosome 8. The major gene, Bch08G017310 (BhGA2ox3), was identified through forward genetics.

Abstract

Fruit pedicel length (FPL) is a crucial trait in wax gourd (Benincasa hispida) that affects fruit development and cultivation management. However, the key regulatory genes and mechanisms of FPL in wax gourds remain poorly understood. In this study, we constructed an F2 population using wax gourd plants with long fruit pedicels (GF-7-1-1) and short fruit pedicels (YSB-1-1-2) as parents. Through BSA-seq, we initially localised the FPL candidate gene to an 8.4 Mb region on chromosome 8, which was further narrowed down to a 1.1 Mb region via linkage analysis. A large F2 population of 2163 individuals was used to screen for recombinants, and the locus was ultimately narrowed to within a 211 kb (62,299,856–62,511,174 bp) region. Sequence and expression analyses showed that Bch08G017310 (named BhGA2ox3) is a strong candidate gene for FPL in wax gourds. It encodes gibberellin (GA) 2-beta-dioxygenase, a member of the GA 2-oxidase (GA2ox) family. Cytology showed that GA treatment significantly elongated the fruit pedicels and enlarged the cells in the plants with short fruit pedicels. Ectopic expression of BhGA2ox3 showed that BhGA2ox3 overexpression in Arabidopsis thaliana resulted in significantly shorter fruit pedicels. This study lays a theoretical foundation for the regulatory mechanism of FPL in wax gourds and molecular breeding.

 

See https://link.springer.com/article/10.1007/s00122-024-04781-z

 

Back      Print      View: 65

[ Other News ]___________________________________________________
  • Egypt Holds Workshop on New Biotech Applications
  • UN Agencies Urge Transformation of Food Systems
  • Taiwan strongly supports management of brown planthopper—a major threat to rice production
  • IRRI Director General enjoins ASEAN states to invest in science for global food security
  • Rabies: Educate, vaccinate and eliminate
  • “As a wife I will help, manage, and love”: The value of qualitative research in understanding land tenure and gender in Ghana
  • CIP Director General Wells Reflects on CIP’s 45th Anniversary
  • Setting the record straight on oil palm and peat in SE Asia
  • Why insect pests love monocultures, and how plant diversity could change that
  • Researchers Modify Yeast to Show How Plants Respond to Auxin
  • GM Maize MIR162 Harvested in Large Scale Field Trial in Vinh Phuc, Vietnam
  • Conference Tackles Legal Obligations and Compensation on Biosafety Regulations in Vietnam
  • Iloilo Stakeholders Informed about New Biosafety Regulations in PH
  • Global wheat and rice harvests poised to set new record
  • GM Maize Harvested in Vietnam Field Trial Sites
  • New label for mountain products puts premium on biological and cultural diversity
  • The Nobel Prize in Physiology or Medicine 2016
  • Shalabh Dixit: The link between rice genes and rice farmers
  • People need affordable food, but prices must provide decent livelihoods for small-scale family farmers
  • GM Seeds Market Growth to Increase through 2020 Due to Rise in Biofuels Use

 

Designed & Powered by WEBSO CO.,LTD