Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  2
 Total visitors :  8180724

Genome-wide identification and data mining reveals major-latex protein (MLP) from the PR-10 protein family played defense-related roles against phytopathogenic challenges in cassava (Manihot esculenta Crantz)
Friday, 2024/11/08 | 08:43:12

Unchera ViboonjunRawit Longsaward

Genetica; 2024 Aug 31. doi: 10.1007/s10709-024-00211-6. Online ahead of print.

Abstract

Despite being identified in previous articles, the pathogenesis-related 10 (PR-10) protein remains relatively overlooked and has yet to be fully characterized in numerous plant species. This research employs a comprehensive data mining approach to in silico characterize PR-10 proteins in cassava, a vital crop plant globally. In this study, the focus was on in silico identified 53 cassava PR-10 proteins, which can be categorized into two main subgroups: 34 major latex proteins (MLPs) and 13 major allergen proteins, Pru ar 1, based on their phylogenetic relationship. The genome collinearity analysis with the rubber tree showed a possible evolutionary relationship of the PR-10 gene between these two Euphorbiaceae species, specifically on their chromosome 15. Notably, MLP423 and other MLP proteins were identified in various previously published cassava transcriptome datasets in response to biotic treatments from diverse phytopathogens, including anthracnose fungus, viruses, and bacterial blight. Ligand prediction and molecular docking of three MLP423 proteins have revealed potential interaction with cytokinin and abscisic acid hormones. Their expressions and predicted binding affinities are discussed here, highlighting their role as contributors to cassava's defense network against key diseases.

 

See https://pubmed.ncbi.nlm.nih.gov/39215788/

 

Back      Print      View: 66

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD