Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  8180635

Genome-wide identification of sweet potato U-Box E3 ubiquitin ligases and roles of IbPUB52 in negative regulation of drought stress
Wednesday, 2024/10/16 | 08:28:48

Shanwu LyuYaping MaoYi ZhangTianli YuXuangang YangHongbo ZhuShulin Deng

Physiol Plant.; 2024 Sep-Oct; 176(5):e14568. doi: 10.1111/ppl.14568.

Abstract

The plant U-box (PUB) proteins, a family of ubiquitin ligases (E3) enzymes, are pivotal in orchestrating many biological processes and facilitating plant responses to environmental stressors. Despite their critical roles, exploring the PUB gene family's characteristics and functional diversity in sweet potato (Ipomoea batatas (L.) Lam.) has been notably limited. There were 81 IbPUB genes identified within the sweet potato genome, and they were categorized into eight distinct groups based on domain architecture, revealing a non-uniform distribution across the 15 chromosomes of I. batatas. The investigation of cis-acting elements has shed light on the potential of PUBs to participate in a wide array of biological processes, particularly emphasizing their role in mediating responses to abiotic stresses. Transcriptome profiles revealed that IbPUB genes displayed a wide range of expression levels among different tissues and were regulated by salt or drought stress. IbPUB52 has emerged as a gene of significant interest due to its induction by salt and drought stresses. Localization studies have confirmed the presence of IbPUB52 in both the nucleus and the cytoplasm, and its ubiquitination activity has been validated through rigorous in vitro and in vivo assays. Intriguingly, the heterogeneous expression of IbPUB52 in Arabidopsis resulted in decreased drought tolerance. The virus-induced gene silencing (VIGS) of IbPUB52 in sweet potatoes led to enhanced resistance to drought. This evidence suggests that IbPUB52 negatively regulates the drought tolerance of plants. The findings of this study are instrumental in advancing our comprehension of the functional dynamics of PUB E3 ubiquitin ligases in sweet potatoes.

 

See https://pubmed.ncbi.nlm.nih.gov/39377156/

 

Figure: Responses to drought stress in transgenic and wild-type sweet potato plants. (A and B) Morphological appearance of transgenic and wild-type plants, respectively. (C and D) Phenotypes of transgenic and wild-type plants grown in soil after 12 days of drought stress, respectively. (E and F) Yield performance of wild-type and transgenic plants grown under control conditions, respectively. (G and H) Yield performance of wild-type and transgenic plants grown under drought conditions for 90 days, respectively. (Mbinda et al. 2019)

 

Back      Print      View: 102

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD