Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  17
 Total visitors :  8517982

Histopathological Alterations in Nilaparvata lugens (Hemiptera: Delphacidae) after Exposure to Cordyceps javanica
Wednesday, 2024/10/02 | 13:24:00

Peerasak BunsapSinpachai Senarat , Seree NiyomdechaChaninun PornsuriyaGen KanekoNarit Thaochan

Insects 2024 Jul 26;15(8):565. doi: 10.3390/insects15080565.

Abstract

The brown planthopper (BPH), Nilaparvata lugens (Stål, 1854), is a pest of rice plants worldwide. Cordyceps javanica is a destructive entomopathogenic fungus known to attack leafhoppers or BPHs specifically. Live adult BPH samples were inoculated with isolated C. javanica PSUC002, and their interaction was morpho-histologically examined from 0 to 120 h post-inoculation (pi). We observed that the mortality of BPH continuously increased until 120 h pi (Day 5). Tissue alterations in the host were examined after infection using morphological and histological methods, including the Grocott Methenamine Silver stain test (GMS). Filamentous fungi were first found on the external integument at 12 h pi, and fungal conidia attached to the integument at 24 h pi. However, the initial degeneration of BPHs was identified by histology at 6 h pi especially in the integument and adipose tissue. We identified the degeneration and loss of integument and adipose tissue of infected BPHs at 12 h pi, and their necrosis was completed at 96 h pi. The enzymatic index of the sampled fungi (chitinase and protease) peaked at 7 days of incubation. This study demonstrated that C. javanica PSUC002 is useful to control the BPHs as an eco-friendly practice and will possibly be applied in agriculture.

 

See https://pubmed.ncbi.nlm.nih.gov/39194770/

 

Back      Print      View: 192

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD