Independence Award
- First Rank - Second Rank - Third Rank
Labour Award
- First Rank - Second Rank -Third Rank
National Award
- Study on food stuff for animal(2005)
- Study on rice breeding for export and domestic consumption(2005)
VIFOTEC Award
- Hybrid Maize by Single Cross V2002 (2003)
- Tomato Grafting to Manage Ralstonia Disease(2005)
- Cassava variety KM140(2010)
![]() |
|
![]() |
|
MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana
Friday, 2025/01/24 | 08:51:47
|
||||||||||||||||||||||||||||||||||||||||
Wei Zhao, Xiaoxuan Sun, Shaoping Wu, Shuofan Wu, Chunhua Hu, Heqiang Huo, Guiming Deng, Ou Sheng, Fangcheng Bi, Weidi He, Tongxin Dou, Tao Dong, Chunyu Li, Siwen Liu, Huijun Gao, Chunlong Li, Ganjun Yi & Qiaosong Yang Molecualr Breeding; 09 January 2025; Volume 45, article number 12, (2025) AbstractPrevious studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, Ma04g15900 and Ma08g32850, are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by ‘green revolution gene’, OsSD1) in the banana genome. The expression of MaGA20ox2f is confined to leaves, peduncles, fruit peels, and pulp. Knockout of MaGA20ox2f by CRISPR/Cas9 led to late flowering and low-yielding phenotypes. The flowering time of ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines was delayed approximately by 61 and 58 days, respectively, while fruit yield decreased by 81.13% and 76.23% compared to wild type under normal conditions. The endogenous levels of downstream products of GA20 oxidase, GA15 and GA20, were significantly reduced in ∆MaGA20ox2f mutant shoots and fruits, but bioactive GA1 was only significantly reduced in the mutant fruits. Quantitative proteomics analysis identified 118 up-regulated proteins and 309 down-regulated proteins in both ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines, compared to wild type, with the down-regulated proteins primarily associated with photosynthesis, porphyrin and chlorophyll metabolism. The decreased chlorophyll contents in ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines corroborated the findings of the proteomics data. We propose that photosynthesis inhibition caused by lower chlorophyll contents in ΔMaGA20ox2f mutant leaves and GA1 deficiency in ΔMaGA20ox2f mutant fruits may be the two critical reasons contributing to the late flowering and low-yielding phenotypes of ΔMaGA20ox2f mutants.
See https://link.springer.com/article/10.1007/s11032-024-01523-3
|
||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() |
||||||||||||||||||||||||||||||||||||||||
[ Other News ]___________________________________________________
|