Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  8517635

Mapping and transcriptomic profiling reveal that the KNAT6 gene is involved in the dark green peel colour of mature pumpkin fruit (Cucurbita maxima L.)
Monday, 2024/09/23 | 09:32:11

ChaoJie WangWenqi DingFangyuan ChenKe ZhangYuetong HouGuichao WangWenlong XuYunli Wang & Shuping Qu

Theoretical and Applied Genetics; September 17 2024; vol 137; article 225

Key message

We identified a 580 bp deletion of CmaKNAT6 coding region influences peel colour of mature Cucurbita maxima fruit.

Abstract

Peel colour is an important agronomic characteristic affecting commodity quality in Cucurbit plants. Genetic mapping of fruit peel colour promotes molecular breeding and provides an important basis for understanding the regulatory mechanism in Cucurbit plants. In the present study, the Cucurbita maxima inbred line ‘9-6’ which has a grey peel colour and ‘U3-3-44’ which has a dark green peel colour in the mature fruit stage, were used as plant materials. At 5–40 days after pollination (DAP), the contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids in the ‘U3-3-44’ peels were significantly greater than those in the ‘9-6’ peels. In the epicarp of the ‘9-6’ mature fruit, the presence of nonpigmented cell layers and few chloroplasts in each cell in the pigmented layers were observed. Six generations derived by crossing ‘9-6’ and ‘U3-3-44’ were constructed, and the dark green peel was found to be controlled by a single dominant locus, which was named CmaMg (mature green peel). Through bulked-segregant analysis sequencing (BSA-seq) and insertion-deletion (InDel) markers, CmaMg was mapped to a region of approximately 449.51 kb on chromosome 11 using 177 F2 individuals. Additionally, 1703 F2 plants were used for fine mapping to compress the candidate interval to a region of 32.34 kb. Five coding genes were in this region, and CmaCh11G000900 was identified as a promising candidate gene according to the reported function, sequence alignment, and expression analyses. CmaCh11G000900 (CmaKNAT6) encodes the homeobox protein knotted-1-like 6 and contains 4 conserved domains. CmaKNAT6 of ‘9-6’ had a 580 bp deletion, leading to premature transcriptional termination. The expression of CmaKNAT6 tended to increase sharply during the early fruit development stage but decrease gradually during the late period of fruit development. Allelic diversity analysis of pumpkin germplasm resources indicated that the 580 bp deletion in the of CmaKNAT6 coding region was associated with peel colour. Subcellular localization analysis indicated that CmaKNAT6 is a nuclear protein. Transcriptomic analysis of the inbred lines ‘9-6’ and ‘U3-3-44’ indicated that genes involved in chlorophyll biosynthesis were more enriched in ‘U3-3-44’ than in ‘9-6’. Additionally, the expression of transcription factor genes that positively regulate chlorophyll synthesis and light signal transduction pathways was upregulated in ‘U3-3-44’. These results lay a foundation for further studies on the genetic mechanism underlying peel colour and for optimizing peel colour-based breeding strategies for C. maxima.

 

See https://link.springer.com/article/10.1007/s00122-024-04741-7

 

Back      Print      View: 172

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD