Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  17
 Total visitors :  8367382

Mutations in a Leucine-Rich Repeat Receptor-Like Kinase gene result in male sterility and reduction in the number and size of fruit warts in cucumber (Cucumis sativus L.)
Thursday, 2024/12/26 | 07:55:26

Haiqiang ZhangYanjie LuoWenlong ZhenXin LiMengying LiuPeng LiuGaoyuan ZhangPeng ChenYiqun WengHongzhong Yue & Yuhong Li

Theoretical and Applied Genetics; December 12 2024; vol. 138; article 7

Key message

Mutations in the CsEMS1 gene result in male sterility and reduced wart number and density.

Abstract

Male sterility and fruit wart formation are two significant agronomic characteristics in cucumber (Cucumis sativus), yet knowledge of our underlying genetics is limited. In this study, we identified an EMS-induced male sterility and few small warts mutant (msfsw). Histological observations revealed defects the absence of tapetum, meiotic aberration and impaired microspore formation in the anthers of the mutant. The mutant also exhibits a reduction in both the size and number of fruit spines and fruit tubercules. Genetic analysis revealed that a single recessive gene is responsible for the mutant phenotypes. BSA-Seq and fine genetic mapping mapped the msfsw locus to a 63.7 kb region with four predicted genes. Multiple lines of evidence support CsEMS1(CsaV3_3G016940) as the candidate for the mutant allele which encodes an LRR receptor-like kinase, and a non-synonymous SNP inside the exon of CsEMS1 is the causal polymorphisms for the mutant phenotypes. This function of CsEMS1 in determination of pollen fertility was confirmed with generation and characterization of multiple knockout mutations with CRISPR/Cas9 based gene editing. In the wild-type (WT) plants, CsEMS1 was highly expressed in male flowers. In the mutant, the expression level of CsEMS1, several tapetum identity-related genes, and trichome-related genes were all significantly reduced as compared with the wild-type. Protein–protein interaction assays revealed physical interactions between CsEMS1 and CsTPD1. Quantitation of endogenous phytohormones revealed a reduction in the ethylene precursor ACC in CsEMS1 knockout lines. This work identified an important role of CsEMS1 in anther and pollen development as well as fruit spine/wart development in cucumber.

 

See https://link.springer.com/article/10.1007/s00122-024-04790-y

 

Back      Print      View: 66

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD