Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  26
 Total visitors :  8618770

Myosin-binding protein 13 mediates primary seed dormancy via abscisic acid biosynthesis and signaling in Arabidopsis
Wednesday, 2024/11/20 | 07:55:52

Cui-Hong HaoChen PangLi-Na YangFeng XiongSha Li

The Plant Journal; 30 October 2024; https://doi.org/10.1111/tpj.17112

Figure: Arabidopsis seed anatomy

SUMMARY

Dormancy is an essential characteristic that enables seeds to survive in unfavorable conditions while germinating when conditions are favorable. Myosin-binding proteins (MyoBs) assist in the movement of organelles along actin microfilaments by attaching to both organelles and myosins. In contrast to studies on yeast and metazoans, research on plant MyoBs is still in its early stages and primarily focuses on tip-growing cells. In this study, we found that Arabidopsis MyoB13 is highly expressed in dry mature seeds. The myob13 mutant, created using CRISPR/Cas9, exhibits a preharvest sprouting phenotype, which can be mitigated by after-ripening treatment, indicating that MyoB13 plays a positive role in primary seed dormancy. Furthermore, we show that MyoB13 negatively regulates ABA biosynthesis and signaling pathways. Notably, the expression of MyoB13 orthologs from maize and soybean can completely restore the phenotype of the Arabidopsis myob13 mutant, suggesting that the function of MyoB13 in ABA-induced seed dormancy is evolutionarily conserved. Therefore, the functional characterization of MyoB13 offers an additional genetic resource to help prevent vivipary in crop species.

 

See https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.17112?casa_token=ZBtJMe-YkW5rQuqfHjS

 

Back      Print      View: 177

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD