Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  8180770

Optimization of cassava (Manihot esculenta Crantz) grafting technique to enhance its adoption in cassava cultivation
Wednesday, 2024/10/30 | 08:25:35

Frank Opoku-AgyemangJacqueline Naalamle AmissahStella Owusu-NketiaPeter Amoako OforiMichitaka Notaguchi

MethodsX; 2024 Aug 19: 13:102904. doi: 10.1016/j.mex.2024.102904.

Abstract

Grafting techniques have been successfully adopted to improve resistance to biotic and abiotic stresses, increase yields, fruit quality and study systemic signaling in plants. This technique has not been fully explored in cassava and there is currently no standardized grafting method for this species published especially in Africa. This is the first report on cassava grafting protocol in Africa with valuable advantages including utilizing a cost-effective and environmentally friendly wooden healing chamber. In this study, we describe an optimized cleft grafting protocol for cassava utilizing a wooden healing chamber and outline the step-by-step procedure with optimum conditions to generate a high grafting success rate. Using a top wedge grafting technique with high reproducibility and success rates, we developed a straightforward and robust grafting protocol for cassava (M. esculenta) cultivars. Grafting success was recorded and this protocol produced a high grafting success of 90 % and its reproducibility makes it suitable for mass production thereby addressing the need for efficient cassava propagation. This grafting protocol requires less specialized equipment and expertise making it more accessible to farmers and researchers with limited resources to promote the use of grafting for cassava growth, yield improvement and advanced studies such as systemic long-distance signaling in plants.•Optimization of cleft grafting method obtains a high success grafting rate of cassava.•A wooden healing chamber provides a controlled environment for graft healing.•Promoting cassava grafting; a priority to produce new cultivars and explore breeding research prospects.

 

See https://pubmed.ncbi.nlm.nih.gov/39258290/

 

Figure 5

Post grafting acclimatization and evaluation of 30 days old cassava grafts under greenhouse conditions. (a) Grafted plants acclimatized under greenhouse conditions without grafting clips at the graft junctions. (b) Representative “Pole Bankye”/”CRI-Bankye Hemaa” successful graft at 30 DAG. The “Pole Bankye” cassava scion developed new leaves. Arrowhead indicates the graft junction. (c) The survival rates were determined 30 days after grafting and acclimatization of 19–26 grafts for each combination under greenhouse conditions based on grafts with apparent graft-take, new leaves and good vigor. PB, Pole Bankye; C-BH, CRI-Bankye Hemaa. Bars: 1 and 5 cm.

 

Back      Print      View: 97

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD