Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  2
 Total visitors :  8604958

OsHRZ1 negatively regulates rice resistant to Magnaporthe oryzae infection by targeting OsVOZ2
Monday, 2024/11/18 | 08:16:07

Jia-ying SunZeng-ran ZhouYu-qi WangDong-yu Zhu & Dian-rong Ma

Trangenic Research; September 27 2024

Abstract

Rice blast disease caused by Magnaporthe oryzae significantly reduces yield production. Blast resistance is closely associated with iron (Fe) status, but the mechanistic basis linking iron status to immune function in rice remains largely unknown. Here, iron-binding haemerythrin RING ubiquitin ligases OsHRZ1 was confirmed to play key roles in iron-mediated rice blast resistance. The expression of OsHRZ1 was suppressed by M. oryzae inoculation and high iron treatment. Both mutants of OsHRZ1 enhanced rice resistance to M. oryzaeOsPR1a was up-regulated in OsHRZ1 mutants. Yeast two-hybrid, bimolecular fluorescence complementation, and Co-IP assay results indicated that OsHRZ1 interacts with Vascular Plant One Zinc Finger 2 (OsVOZ2) in the nucleus. Additionally, the vitro ubiquitination assay indicated that OsHRZ1 can ubiquitinate OsVOZ2 and mediate the degradation of OsVOZ2. The mutants of OsVOZ2 showed reduced resistance to M. oryzae and down-regulated the expression of OsPR1a. Yeast one-hybrid, EMSA, and dual-luciferase reporter assay results indicated that OsVOZ2 directly binds to the promoter of OsPR1a, activating its expression. In summary, OsHRZ1 plays an important role in rice disease resistance by mediated degradation of OsVOZ2 thus shaping PR gene expression dynamics in rice cells. This highlights an important link between iron signaling and rice pathogen defenses.

 

See https://link.springer.com/article/10.1007/s11248-024-00415-8

 

Back      Print      View: 151

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD