Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  8367478

OsWRKY49 on qAT5 positively regulates alkalinity tolerance at the germination stage in Oryza sativa L. ssp. japonica
Monday, 2024/12/30 | 08:17:46

Jingnan CuiShuangshuang LiTong ZhangChong LiYuxuan DuanShanbin XuJingguo WangHualong LiuLuomiao YangWei XinYan JiaQingyun BuDetang Zou & Hongliang Zheng

Theoretical and Applied Genetics; December 27 2024; vol.138; article 14

Key message

Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants.

Abstract

With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important. However, as previous studies have concentrated on neutral salt stress, understanding of alkalinity tolerance is still in its infancy, and the genetic resource data is scarce. Here, we used a natural population composed of 295 japonica rice varieties and a recombinant inbred population including 189 lines derived from Caidao (alkali-sensitive) and WD20342 (alkali-tolerant) to uncover the genetic structure of alkalinity tolerance during rice germination. A total of 15 lead SNPs and six QTLs related to relative germination potential (RGP) and relative germination index (RGI) were detected by genome-wide association study and linkage mapping. Of which, Chr5_28094966, a lead SNP was located in the interval of the mapped major QTL qAT5, that was significantly associated with both RGP and RGI in the two populations. According to the LD block analysis and QTL interval, a 425 kb overlapped region was obtained for screening the candidate genes. After haplotype analysis, qRT-PCR and parental sequence analysis, LOC_Os05g49100 (OsWRKY49) was initially considered as the candidate gene. Having studied the characteristics of rice lines with OsWRKY49 knockout and overexpression, we established that OsWRKY49 could be a positive regulator of alkalinity tolerance in rice at the germination stage. Subcellular localization showed that green fluorescent protein-tagged OsWRKY49 was localized in the nucleus. The application of OsWRKY49 could be useful for increasing alkalinity tolerance of rice direct seeding.

 

See https://link.springer.com/article/10.1007/s00122-024-04772-0

 

Back      Print      View: 53

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD