Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  2
 Total visitors :  8180723

QTL mapping and BSR-seq revealed loci and candidate genes associated with the sporadic multifoliolate phenotype in soybean (Glycine max)
Monday, 2024/11/11 | 08:05:02

Zhili WangYongchao NiuYichun XieCheng HuangWai-Shing YungMan-Wah LiFuk-Ling Wong & Hon-Ming Lam

Theoretical and Applied Genetics; November 8 2024; vol.137; article 262

Key message

The QTLs and candidate genes governing the multifoliolate phenotype were identified by combining linkage mapping with BSR-seq, revealing a possible interplay between genetics and the environment in soybean leaf development.

Abstract

Soybean, as a legume, is typified by trifoliolate leaves. Although multifoliolate leaves (compound leaves with more than three leaflets each) have been reported in soybean, including sporadic appearances in the first compound leaves in a recombinant inbred line (RIL) population from a cross between cultivated soybean C08 and wild soybean W05 from this study, the genetic basis of this phenomenon is still unclear. Here, we integrated quantitative trait locus (QTL) mapping with bulked segregant RNA sequencing (BSR-seq) to identify the genetic loci associated with the multifoliolate phenotype in soybean. Using linkage mapping, ten QTLs related to the multifoliolate trait were identified. Among these, a significant and major QTL, qMF-2-1 on chromosome 2 and consistently detected across biological replicates, explained more than 10% of the phenotypic variation. Together with BSR-seq analyses, which analyzed the RILs with the highest multifoliolate frequencies and those with the lowest frequencies as two distinct bulks, two candidate genes were identified: Glyma.06G204300 encoding the transcription factor TCP5, and Glyma.06G204400 encoding LONGIFOLIA 2 (LNG2). Transcriptome analyses revealed that stress-responsive genes were significantly differentially expressed between high-multifoliolate occurrence lines and low occurrence ones, indicating environmental factors probably influence the appearance of multifoliolate leaves in soybean through stress-responsive genes. Hence, this study offers new insights into the genetic mechanism behind the multifoliolate phenotype in soybean.

 

See https://link.springer.com/article/10.1007/s00122-024-04765-z

Figure 4

The single-nucleotide polymorphism (SNP) density between the high-multifoliolate frequency bulk (MUL) and the low-multifoliolate frequency bulk (TRI) on the soybean chromosomes. (a) Distribution of the SNPs between V0-MUL and V0-TRI. (b) Distribution of the SNPs between V1-MUL and V1-TRI. The color of each bar represents the number of SNPs within a 100-kbp window based on the color key. The horizontal axis represents the length of the chromosomes. V0, shoot apical bud from the true leaf stage and V1, leaf tissue from the first compound leaf

 

Back      Print      View: 62

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD