Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  9
 Total visitors :  8604737

Researchers Develop Tomato Plants that Contain Full Genetic Material of Both Parent Plants
Tuesday, 2024/11/05 | 07:31:15

In a study conducted at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, scientists established a system to generate clonal sex cells in tomato plants and used them to design the genomes of offspring. The fertilization of a clonal egg from one parent by a clonal sperm from another parent produced plants containing the complete genetic information of both parents.

 

In the system that Underwood and his team developed, meiosis was replaced by mitosis, a simple cell division, in tomato. In the so-called MiMe system (Mitosis instead of Meiosis) the cell division mimics a mitosis, thus sidestepping genetic recombination and segregation, and produces sex cells that are exact clones of the parent plant. For the first time, researchers were able to harness clonal sex cells to engineer offspring through a process called “polyploid genome design.”

 

The researchers performed crosses where the clonal egg from one MiMe tomato plant was fertilized by a clonal sperm from another MiMe tomato plant. The resulting tomato plants contained 48 chromosomes and the complete genetic repertoire of both parents.

 

For more details, read the article in the Max Planck Institute for Plant Breeding Research website.

See: https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=21035

 

Back      Print      View: 190

[ Other News ]___________________________________________________
  • Australia`s Gene Regulator OGTR Invites Comments on Field Trial of GM Perennial Ryegrass
  • Long Lost Chromosome Increases Nitrogen Efficiency of Modern Maize
  • Modified Agrobacterium Strain Useful for Switchgrass Transformation
  • Study Reveals Role of Soybean 14-3-3 Gene on White Mold Resistance
  • CIMMYT Study Says Breeding New Crops Must Adapt to Climate Change
  • Researchers Identify Genes to Help Fruit Adapt to Droughts
  • Kenyans Need to Turn to GM Crops to Combat Drought
  • 28-Million-Year-Old Gene Protects Plants Against Caterpillars
  • Agronomists Find Wheat Varieties Resistant to Enzyme Depletion
  • Root Structure Mapped Out to Identify Components of Drought Stress Tolerance in Rice
  • Scientists Report First use of CRISPR to Substitute Genes to Treat Patients with Cancer
  • Large Chinese Seed Companies Likely to Produce Gene-Edited Crops for Farmers – Study
  • Study Finds CRISPR-Cas9 Leads to Unexpected Genomic Changes
  • Plants Yield Better When Grown Among Genetically Similar Plants
  • Codex Alimentarius: FAO Director-General stresses key role of science and data in the Commission`s work
  • World Food Programme and ICRISAT: working to improve nutrition and build resilience in vulnerable communities
  • From Lab to Farm: Scientific research and its contribution to family farming and rural entrepreneurship
  • Chemists Create Artificial Photosynthesis 10 Times More Efficient than Existing Systems
  • Micro/Nanofluidics and Lab-on-Chip Based Emerging Technologies for Biomedical and Translational Research Applications - Part B
  • Scientists Identify Wheat Genetically Resistant to Fungus Causing Snow Mold

 

Designed & Powered by WEBSO CO.,LTD