Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  4
 Total visitors :  8616394

Researchers Identify Genes to Help Fruit Adapt to Droughts
Saturday, 2022/12/10 | 08:14:37

Researchers from the Boyce Thompson Institute (BTI) and Cornell University have completed the first study that provides a comprehensive picture of changes in gene expression in response to water stress in tomatoes and identified genes that could help plant breeders develop fruit that can cope with drought conditions.

 

Led by BTI Assistant Professor Carmen Catalá, who is also a research associate in the School of Integrative Plant Science at Cornell and Philippe Nicolas, a postdoctoral researcher in Catalá's lab, the team identified a number of genes that are involved in water stress response in tomatoes. “We can now begin to select candidate genes that could help breeders develop fruit that can adapt to drought conditions, and not just tomatoes but also grapes, apples, and fleshy fruit in general,” said Catalá.

 

The research team looked at gene expression in tomato leaves and six fruit organs, including pericarp, placenta, septum, columella, jelly, and seeds, at two different periods (growing and ripe fruit) and under four different water stress conditions (none, mild, intermediate, and strong). They found that each of the fruit organ tissues changed in unique ways over time. According to Catalá, less than 1% of the expressed genes affected by water stress were shared among all six fruit tissues, and more than 50% of the affected genes were specific to a single tissue. They also found that mild drought brought some positive effects. For example, water stress increases the amount of lycopene in ripe tomatoes. Water-stressed fruit also had higher levels of starch biosynthesis, which could yield sweeter tomatoes.

 

For more details, read the article in BTI News.

https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=19915

Back      Print      View: 256

[ Other News ]___________________________________________________
  • Australia`s Gene Regulator OGTR Invites Comments on Field Trial of GM Perennial Ryegrass
  • Long Lost Chromosome Increases Nitrogen Efficiency of Modern Maize
  • Modified Agrobacterium Strain Useful for Switchgrass Transformation
  • Study Reveals Role of Soybean 14-3-3 Gene on White Mold Resistance
  • CIMMYT Study Says Breeding New Crops Must Adapt to Climate Change
  • Kenyans Need to Turn to GM Crops to Combat Drought
  • 28-Million-Year-Old Gene Protects Plants Against Caterpillars
  • Agronomists Find Wheat Varieties Resistant to Enzyme Depletion
  • Root Structure Mapped Out to Identify Components of Drought Stress Tolerance in Rice
  • Scientists Report First use of CRISPR to Substitute Genes to Treat Patients with Cancer
  • Large Chinese Seed Companies Likely to Produce Gene-Edited Crops for Farmers – Study
  • Study Finds CRISPR-Cas9 Leads to Unexpected Genomic Changes
  • Plants Yield Better When Grown Among Genetically Similar Plants
  • Codex Alimentarius: FAO Director-General stresses key role of science and data in the Commission`s work
  • World Food Programme and ICRISAT: working to improve nutrition and build resilience in vulnerable communities
  • From Lab to Farm: Scientific research and its contribution to family farming and rural entrepreneurship
  • Chemists Create Artificial Photosynthesis 10 Times More Efficient than Existing Systems
  • Micro/Nanofluidics and Lab-on-Chip Based Emerging Technologies for Biomedical and Translational Research Applications - Part B
  • Scientists Identify Wheat Genetically Resistant to Fungus Causing Snow Mold
  • Antimicrobial resistance: Now is the time for collective action

 

Designed & Powered by WEBSO CO.,LTD