Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  10
 Total visitors :  7477458

A new way to help plants utilize hardly digestible organic phosphorus
Friday, 2015/10/23 | 08:33:45

14 October 2015

http://kpfu.ru/eng/news-eng/a-new-way-to-help-plants-utilize-hardly-159155.html

 

It was estimated that phosphorus stocks in nature will last for the upcoming 60 years, but the researchers of Kazan University looking for ways to prevent the catastrophe.

 

The current dilemma of inorganic phosphorus depletion and pollution caused by excess phytate levels in the soil poses a long-term risk for sustainable agriculture.

 

“Phytases are enzymes that hydrolyze phytate and release phosphates. Plants have endogenous phytases in seeds but their activity in other plant tissues is very low. In contrast to many higher eukaryotes, microorganisms (bacteria and fungi) can scavenge phosphorus from phytate because they produce a variety of phytases with very different modes of action and specificity”, shares Lia Valeeva.

 

Along with her peer Nyamsuren Chuluuntsetseg and supervised by Prof. Margarita Sharipova of the Department of Microbiology and Eugene V. Shakirov of the UT Austin they conducted a unique bioengineering experiment: phytase gene of Pantoea agglomerans (Gram-negative and known to be an opportunistic pathogen) was transplanted to Arabidopsis thaliana weed in order to increase the plant's ability to break down highly stable and insoluble phosphorus compounds.

 

The sequence of Pantoea sp. paPhyC gene was codon-optimized for expression in A. Thaliana. All wild-type (WT) and transgenic plants were grown in controlled-environment conditions (16 h light period/ 8 h dark period) at 22º C and 60% humidity. Before planting, soil was sterilized by autoclaving and all plants were watered every 2-3 days with distilled water.

 

The transgenic plants express phytase at both the trans­cription and translation levels and can serve as a model for better understanding of the effects of bacterial phytase expression in plant tissues on plant metabolism, growth and development. While some microbial phytases can be used to engineer plants that are able to grow on phosphate-depleted medium, others can be used to engineer low-phytate plants better suitable for animal feed and less likely to contribute to increased environmental pollution.

 

Obtained results indicate that bacterial enzymes in plants can be an efficient way to potentially increase crop performance in conditions of inorganic phosphorus deficiency in the soil.

 

Подробности: http://kpfu.ru/eng/news-eng/a-new-way-to-help-plants-utilize-hardly-159155.html

 

Любое использование материалов допускается только при наличии гиперссылки на портал КФУ (kpfu.ru)

Back      Print      View: 623

[ Other News ]___________________________________________________
  • Beyond genes: Protein atlas scores nitrogen fixing duet
  • 2016 Borlaug CAST Communication Award Goes to Dr. Kevin Folta
  • FAO and NEPAD team up to boost rural youth employment in Benin, Cameroon, Malawi and Niger
  • Timely seed distributions in Ethiopia boost crop yields, strengthen communities’ resilience
  • Parliaments must work together in the final stretch against hunger
  • Empowering women farmers in the polder communities of Bangladesh
  • Depression: let’s talk
  • As APEC Concludes, CIP’s Food Security and Climate Smart Agriculture on Full Display
  • CIAT directly engages with the European Cocoa Industry
  • Breeding tool plays a key role in program planning
  • FAO: Transform Agriculture to Address Global Challenges
  • Uganda Holds Banana Research Training for African Scientists and Biotechnology Regulators
  • US Congress Ratifies Historic Global Food Security Treaty
  • Fruit Fly`s Genetic Code Revealed
  • Seminar at EU Parliament Tackles GM Crops Concerns
  • JICA and IRRI ignites a “seed revolution” for African and Asian farmers
  • OsABCG26 Vital in Anther Cuticle and Pollen Exine Formation in Rice
  • Akira Tanaka, IRRI’s first physiologist, passes away
  • WHO calls for immediate safe evacuation of the sick and wounded from conflict areas
  • Farmer Field School in Tonga continues to break new ground in the Pacific for training young farmers

 

Designed & Powered by WEBSO CO.,LTD