Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  7438212

Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes
Thursday, 2021/04/29 | 08:32:36

Poonam Tiwari , Dipali Srivastava, Abhishek Singh ChauhanYuvraj IndoliyaPradyumna Kumar SinghShalini TiwariTouseef FatimaShashank Kumar MishraSanjay Dwivedi , Lalit AgarwalPoonam C SinghMehar H AsifRudra D TripathiPramod A ShirkeDebasis ChakrabartyPuneet Singh ChauhanChandra Shekhar Nautiyal

Ecotoxicol Environ Saf 2021 Jan 1;207:111252.  doi: 10.1016/j.ecoenv.2020.111252. Epub 2020 Sep 8.

Abstract

Drought is the major abiotic factors that limit crop productivity worldwide. To withstand stress conditions, plants alter numerous mechanisms for adaption and tolerance. Therefore, in the present study, 106 rice varieties were screened for drought tolerance phenotype via exposing different concentrations of polyethylene glycol 6000 (PEG) in the hydroponic nutrient medium at the time interval of 1, 3, and 7 days to evaluate the changes in their root system architecture. Further, based on root phenotype obtained after PEG-induced drought, two contrasting varieties drought-tolerant Heena and -sensitive Kiran were selected to study transcriptional and physiological alterations at the same stress durations. Physiological parameters (photosynthesis rate, stomatal conductance, transpiration), and non-enzymatic antioxidants (carotenoids, anthocyanins, total phenol content) production indicated better performance of Heena than Kiran. Comparatively higher accumulation of carotenoid and anthocyanin content and the increased photosynthetic rate was also observed in Heena. Root morphology (length, numbers of root hairs, seminal roots and adventitious roots) and anatomical data (lignin deposition, xylem area) enable tolerant variety Heena to better maintain membrane integrity and relative water content, which also contribute to comparatively higher biomass accumulation in Heena under drought. In transcriptome profiling, significant drought stress-associated differentially expressed genes (DEGs) were identified in both the varieties. A total of 1033 and 936 uniquely upregulated DEGs were found in Heena and Kiran respectively. The significant modulation of DEGs that were mainly associated with phytohormone signaling, stress-responsive genes (LEA, DREB), transcription factors (TFs) (AP2/ERF, MYB, WRKY, bHLH), and genes involved in photosynthesis and antioxidative mechanisms indicate better adaptive nature of Heena in stress tolerance. Additionally, the QTL-mapping analysis showed a very high number of DEGs associated with drought stress at AQHP069 QTL in Heena in comparison to Kiran which further distinguishes the drought-responsive traits at the chromosomal level in both the contrasting varieties. Overall, results support the higher capability of Heena over Kiran variety to induce numerous genes along with the development of better root architecture to endure drought stress.

 

See https://pubmed.ncbi.nlm.nih.gov/32916530/

Back      Print      View: 1713

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD