Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  4
 Total visitors :  7640493

Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
Sunday, 2016/10/16 | 10:15:06

Zhang J, Xue Q, Gao H, Lai H, Wang P.

Microb Cell Fact. 2016 Oct 3;15(1):168.

Abstract

BACKGROUND:

Lipopeptides are known as promising microbial surfactants and have been successfully used in enhancing oil recovery in extreme environmental conditions. A biosurfactant-producing strain, Bacillus atrophaeus 5-2a, was recently isolated from an oil-contaminated soil in the Ansai oilfield, Northwest China. In this study, we evaluated the crude oil removal efficiency of lipopeptide biosurfactants produced by B. atrophaeus 5-2a and their feasibility for use in microbial enhanced oil recovery.

RESULTS:

The production of biosurfactants by B. atrophaeus 5-2a was tested in culture media containing eight carbon sources and nitrogen sources. The production of a crude biosurfactant was 0.77 g L-1 and its surface tension was 26.52 ± 0.057 mN m-1 in a basal medium containing brown sugar (carbon source) and urea (nitrogen source). The biosurfactants produced by the strain 5-2a demonstrated excellent oil spreading activity and created a stable emulsion with paraffin oil. The stability of the biosurfactants was assessed under a wide range of environmental conditions, including temperature (up to 120 °C), pH (2-13), and salinity (0-50 %, w/v). The biosurfactants were found to retain surface-active properties under the extreme conditions. Additionally, the biosurfactants were successful in a test to simulate microbial enhanced oil recovery, removing 90.0 and 93.9 % of crude oil adsorbed on sand and filter paper, respectively. Fourier transform infrared spectroscopy showed that the biosurfactants were a mixture of lipopeptides, which are powerful biosurfactants commonly produced by Bacillus species.

CONCLUSIONS:

The study highlights the usefulness of optimization of carbon and nitrogen sources and their effects on the biosurfactants production and further emphasizes on the potential of lipopeptide biosurfactants produced by B. atrophaeus 5-2a for crude oil removal. The favorable properties of the lipopeptide biosurfactants make them good candidates for application in the bioremediation of oil-contaminated sites and microbial enhanced oil recovery process.

 

See http://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-0574-8

 

Fig. 1

FT-IR absorption spectra of biosurfactants produced by Bacillus atrophaeus 5-2a from ‘BB’ (a) and ‘BU’ media (b). BB for the fermentation medium used brown sugar, beef extract and peptone as the carbon and nitrogen sources; BU for the optimal medium used brown sugar and inorganic nitrogen urea as the carbon and nitrogen sources. The same as below, unless otherwise specified

Back      Print      View: 2024

[ Other News ]___________________________________________________
  • Auxin depletion from leaf primordia contributes to organ patterning
  • Phytochrome controls alternative splicing to mediate light responses in Arabidopsis
  • Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year
  • Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655
  • Factor analytic mixed models for the provision of grower information from national crop variety testing programs
  • Exploring the areas of applicability of whole genome prediction methods for Asian rice (Oryza sativa L.)
  • Investigation of terpene diversification across multiple sequenced plant genomes
  • Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism
  • Effect of the ahas Transgene on Biological Nitrogen Fixation and Yield of Soybean
  • Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity
  • A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome
  • High-Resolution Linkage Map and Chromosome-Scale Genome Assembly for Cassava (Manihot esculenta Crantz) from 10 Populations
  • Analysis of the Transcriptome of Banana Fruit during Ripening
  • Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  • Salt Tolerant Gene in Soybean Identified
  • Climate change decouples oceanic primary and export productivity and organic carbon burial
  • Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus
  • 5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA
  • Fine mapping of the qLOP2 and qPSR2 1 loci associated with chilling stress tolerance of wild rice seedlings
  • Natural diversity in daily rhythms of gene expression contributes to phenotypic variation

 

Designed & Powered by WEBSO CO.,LTD