Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  12
 Total visitors :  8727676

Fine mapping and transcriptome profiling reveal CpAPRR2 to modulate immature fruit rind color formation in zucchini (Cucurbita pepo)
Wednesday, 2024/07/17 | 08:36:47

Wenqi DingYusong LuoWenling LiFangyuan ChenChaojie WangWenlong XuYunli Wang & Shuping Qu

Theoretical and Applied Genetics; July 2024; vol. 137; article 167

Figure: Cucurbita pepo

Key message

A large fragment deletion of CpAPRR2, encoding a two-component response regulator-like protein, which influences immature white rind color formation in zucchini (Cucurbita pepo).

Abstract

Fruit rind color is an important agronomic trait that affects commodity quality and consumer choice in zucchini (Cucurbita pepo). However, the molecular mechanism controlling rind color is unclear. We characterized two zucchini inbred lines: ‘19’ (dark green rind) and ‘113’ (white rind). Genetic analysis revealed white immature fruit rind color to be controlled by a dominant locus (CpW). Combining bulked segregant analysis sequencing (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) markers, we mapped the CpW locus to a 100.4 kb region on chromosome 5 and then narrow down the candidate region to 37.5 kb using linkage analysis of 532 BC1 and 1613 F2 individuals, including 6 coding genes. Among them, Cp4.1LG05g02070 (CpAPRR2), encoding a two-component response regulator-like protein, was regarded to be a promising candidate gene. The expression level of CpAPRR2 in dark green rind was significantly higher than that in white rind and was induced by light. A deletion of 2227 bp at the 5′ end of CpAPRR2 in ‘113’ might explain the white phenotype. Further analysis of allelic diversity in zucchini germplasm resources revealed rind color to be associated with the deletion of CpAPRR2. Subcellular localization analysis indicated that CpAPRR2 was a nuclear protein. Transcriptome analysis using near-isogenic lines with dark green (DG) and white (W) rind indicated that genes involved in photosynthesis and porphyrin metabolism pathways were enriched in DG compared with W. Additionally, chlorophyll synthesis-related genes were upregulated in DG. These results identify mechanisms of zucchini rind color and provide genetic resources for breeding.

 

See https://link.springer.com/article/10.1007/s00122-024-04676-z

 

Back      Print      View: 165

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD