Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  4
 Total visitors :  7604604

GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
Monday, 2016/10/17 | 07:59:49

Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R.

Sci Rep. 2016 Oct 7;6:35040. doi: 10.1038/srep35040.


The bZIP transcription factor (TF) act as an important regulator for the abscisic acid (ABA) mediated abiotic stresses signaling pathways in plants. Here, we reported the cloning and characterization of GhABF2, encoding for typical cotton bZIP TF. Overexpression of GhABF2 significantly improved drought and salt stress tolerance both in Arabidopsis and cotton. However, silencing of GhABF2 made transgenic cotton sensitive to PEG osmotic and salt stress. Expression of GhABF2 was induced by drought and ABA treatments but repressed by high salinity. Transcriptome analysis indicated that GhABF2 increases drought and salt tolerance by regulating genes related to ABA, drought and salt response. The proline contents, activity of superoxide dismutase (SOD) and catalase (CAT) were also significantly increased in GhABF2-overexpression cottons in comparison to wild type after drought and salt treatment. Further, an increase in fiber yield under drought and saline-alkali wetland exhibited the important role of GhABF2 in enhancing the drought and salt tolerance in transgenic lines. In conclusion, manipulation of GhABF2 by biotechnological tools could be a sustainable strategy to deploy drought and salt tolerance in cotton.


See http://www.nature.com/articles/srep35040


Figure 1: Cloning and characterization of GhABF2 and subcellular localization of the GhABF2-GFP fusion protein.

(a) Phylogenetic analysis of Group A bZIP TFs in Arabidopsis and rice. The scale bar indicates 0.1 amino acid substitution per site. (b) Comparison of conserved bZIP domains of Group A TFs. Sequences were aligned using ClustalX. Conserved amino acids are highlighted. White letter on black background highlights those amino acids conserved across all of Group A samples (100% conservation), while black letter on gray background highlights amino acids conserved in 60% conservation of the samples. Red arrows indicated the Leucin. (c) Phylogenetic relationship of GhABF2 homologs in plants. AT (Arabidopsis thaliana) OS (Oryza sativa), VV (Vitis vinifera), ST (Solanum tuberosum), POPTRO (Populus trichocarpa), RCOM (Ricinus communis), GM (Glycine max), MT (Medicago truncatula), CS (Cucumis sativus), CA (Cicer arietinum), CICLE (Citrus clementine), TC (Theobroma cacao), CM (Cucumis melo), EG (Eucalyptus grandis), POEUP (Populus euphratica), SI (Sesamum indicum), and JC (Jatropha curcas). The scale bar indicates 0.1 amino acid substitution per site. (d) Subcellular localization of GhABF2-GFP in rice protoplast. Scale bars = 10 μm.

Back      Print      View: 1903

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
  • A highly robust and optimized sequence-based approach for genetic polymorphism discovery and genotyping in large plant populations


Designed & Powered by WEBSO CO.,LTD