Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  14
 Total visitors :  7697125

Fine mapping and identification of a Fusarium wilt resistance gene FwS1 in pea
Thursday, 2024/07/11 | 08:17:45

Dong Deng, Suli SunWenqi WuCanxing DuanXuehong Wu & Zhendong Zhu

Theoretical and Applied Genetics; July 2024; vol.137; article 171

 

Figure: The Symptom of Pea Fusarium Wilt.

Key message

A Fusarium wilt resistance gene FwS1 on pea chromosome 6 was identified and mapped to a 91.4 kb region by a comprehensive genomic-based approach, and the gene Psat6g003960 harboring NB-ARC domain was identified as the putative candidate gene.

Abstract

Pea Fusarium wilt, incited by Fusarium oxysporum f. sp. pisi (Fop), has always been a devastating disease that causes severe yield losses and economic damage in pea-growing regions worldwide. The utilization of pea cultivars carrying resistance gene is the most efficient approach for managing this disease. In order to finely map resistance gene, F2 populations were established through the cross between Shijiadacaiwan 1 (resistant) and Y4 (susceptible). The resistance genetic analysis indicated that the Fop resistance in Shijiadacaiwan 1 was governed by a single dominant gene, named FwS1. Based on the bulked segregant analysis sequencing analyses, the gene FwS1 was initially detected on chromosome 6 (i.e., linking group II, chr6LG2), and subsequent linkage mapping with 589 F2 individuals fine-mapped the gene FwS1 into a 91.4 kb region. The further functional annotation and haplotype analysis confirmed that the gene Psat6g003960, characterized by a NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain, was considered as the most promising candidate gene. The encoding amino acids were altered by a “T/C” single-nucleotide polymorphism (SNP) in the first exon of the Psat6g003960, and based on this SNP locus, the molecular marker A016180 was determined to be a diagnostic marker for FwS1 by validating its specificity in both pea accessions and genetic populations with different genetic backgrounds. The FwS1 with diagnostic KASP marker A016180 could facilitate marker-assisted selection in resistance pea breeding in pea. In addition, a comparison of the candidate gene Psat6g003960 in 74SN3B and SJ1 revealed the same sequences. This finding indicated that 74SN3B carried the candidate gene for FwS1, suggesting that FwS1 and Fwf may be closely linked or an identical resistant gene against Fusarium wilt.

 

See https://link.springer.com/article/10.1007/s00122-024-04682-1

Back      Print      View: 33

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD