Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7445518

Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
Thursday, 2016/10/06 | 08:11:46

Marina Eremina, Simon J. Unterholzner, Ajith I. Rathnayake, Marcos Castellanos, Mamoona Khan, Karl G. Kugler, Sean T. May, Klaus F. X. Mayer, Wilfried Rozhon, and Brigitte Poppenberger

Significance

Cold stress is an influential environmental factor that affects plant distribution and can strongly limit crop productivity. Plants have evolved sophisticated signaling cascades that enable them to withstand chilling or even freezing temperatures. These cascades alter the biochemical composition of cells for protection from damage caused by low-temperature stress. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. In this work we reveal that the brassinosteroids, a class of steroid hormones that is known for its role in growth control, also confers freezing tolerance in plants and describe regulatory circuits that contribute to this activity. Implications for the breeding of cold-resistant plants are discussed.

Abstract

Brassinosteroids (BRs) are growth-promoting plant hormones that play a role in abiotic stress responses, but molecular modes that enable this activity remain largely unknown. Here we show that BRs participate in the regulation of freezing tolerance. BR signaling-defective mutants of Arabidopsis thaliana were hypersensitive to freezing before and after cold acclimation. The constitutive activation of BR signaling, in contrast, enhanced freezing resistance. Evidence is provided that the BR-controlled basic helix–loop–helix transcription factor CESTA (CES) can contribute to the constitutive expression of the C-REPEAT/DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR (CBF) transcriptional regulators that control cold responsive (COR) gene expression. In addition, CBF-independent classes of BR-regulated COR genes are identified that are regulated in a BR- and CES-dependent manner during cold acclimation. A model is presented in which BRs govern different cold-responsive transcriptional cascades through the posttranslational modification of CES and redundantly acting factors. This contributes to the basal resistance against freezing stress, but also to the further improvement of this resistance through cold acclimation.

 

See http://www.pnas.org/content/113/40/E5982.abstract.html?etoc

PNAS October 4 2016; vol.113; no.40: E5982–E5991

 

Fig. 4.

CES and homologs promote acquired freezing tolerance. (A and B) Freezing tolerance of ces-D, tM, and qM plants. Three-week-old plants grown in LD growth conditions at 21 °C were acclimated for 3 d at 4 °C and then treated at −10 °C for 6 h. Survival was scored after 2 wk of recovery at 21 °C. Images of representative plants (A) and quantified results (B) are shown. Error bars show SD of three biological replicates. (C) Electrolyte leakage in detached leaves of acclimated plants of the WT, ces-D, tM, and qM. Plants were grown and acclimated as described in B before electrolyte leakage assays were performed. Error bars show SD of three biological replicates.

Back      Print      View: 2030

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
  • A highly robust and optimized sequence-based approach for genetic polymorphism discovery and genotyping in large plant populations

 

Designed & Powered by WEBSO CO.,LTD