Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7433231

Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
Sunday, 2016/10/09 | 06:27:42

Yue Cao, Hao Ai, Ajay Jain, Xueneng Wu, Liang Zhang, Wenxia Pei, Aiqun Chen, Guohua Xu and Shubin Sun

BMC Plant Biology; 3 October 2016; 16:210 DOI: 10.1186/s12870-016-0853-x

Abstract

Background

Phosphorus (P), an essential macronutrient, is often limiting in soils and affects plant growth and development. In Arabidopsis thaliana, Low Phosphate Root1 (LPR1) and its close paralog LPR2 encode multicopper oxidases (MCOs). They regulate meristem responses of root system to phosphate (Pi) deficiency. However, the roles of LPR gene family in rice (Oryza sativa) in maintaining Pi homeostasis have not been elucidated as yet.

Results

Here, the identification and expression analysis for the homologs of LPR1/2 in rice were carried out. Five homologs, hereafter referred to as OsLPR1-5, were identified in rice, which are distributed on chromosome1 over a range of 65 kb. Phylogenetic analysis grouped OsLPR1/3/4/5 and OsLPR2 into two distinct sub-clades with OsLPR3 and 5 showing close proximity. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed higher expression levels of OsLPR3-5 and OsLPR2 in root and shoot, respectively. Deficiencies of different nutrients ie, P, nitrogen (N), potassium (K), magnesium (Mg) and iron (Fe) exerted differential and partially overlapping effects on the relative expression levels of the members of OsLPR family. Pi deficiency (−P) triggered significant increases in the relative expression levels of OsLPR3 and 5. Strong induction in the relative expression levels of OsLPR3 and 5 in osphr2 suggested their negative transcriptional regulation by OsPHR2. Further, the expression levels of OsLPR3 and 5 were either attenuated in ossiz1 and ospho2 or augmented in rice overexpressing OsSPX1.

Conclusions

The results from this study provided insights into the evolutionary expansion and a likely functional divergence of OsLPR family with potential roles of OsLPR3 and 5 in the maintenance of Pi homeostasis in rice.

 

See: http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0853-x

 

Fig. 1

Comparative identity matrices and gene structures of LPR genes in Arabidopsis and rice. a DNAMAN 7.0 program was used for multi-sequence alignments of nucleotides and amino acids for determining per cent identity matrices across them. b Schematic representation of genes showing UTR (empty boxes), CDS (black boxes) and introns (black lines) with numbers indicating length of each of them.

Back      Print      View: 1681

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
  • A highly robust and optimized sequence-based approach for genetic polymorphism discovery and genotyping in large plant populations

 

Designed & Powered by WEBSO CO.,LTD