Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  4
 Total visitors :  7515391

C4 Photosynthesis Gene Discovered in Foxtail Millet
Friday, 2018/08/10 | 06:42:15

Deoxycytidine monophosphate deaminase (DCD) is a key enzyme in the de novo deoxythymidine triphosphate (dTTP) synthesis. DCD is known to play key roles in cell cycle progression, and plant development. However, not much is known of the function of the DCD gene in Panicoideae plants. Setaria is an ideal model of Panicoideae grasses, especially for C4 photosynthesis research.

 

Researchers from the Chinese Academy of Agricultural Sciences studied a foxtail millet (Setaria italica) stripe leaf mutant, sistl2. The sistl2 mutant exhibited semi-dwarfism, striped leaves, abnormal chloroplast structure, and delayed cell cycle progression compared with its wildtype parent Yugu1.

 

The researchers, which were led by Shuo Zhang and Sha Tang, identified the causal gene SiSTL2, which encodes a DCD protein. Further analysis indicated that SiSTL2 plays a role in the regulation of chloroplast biogenesis, cell cycle, and DNA replication, which suggested that the gene has similar functions in both foxtail millet and rice.

 

This study provides in-depth knowledge of the role of DCD in the C4 photosynthesis of model plant Setaria.

 

For more information, read the article in Frontiers in Plant Science.

Figure 1: Phenotypic characterization of sistl2 mutant. (A) The four-leaf stage seedlings of Yugu1 and sistl2. (B) The first four leaves of Yugu1 and sistl2 were placed in order from left to right. In each couple, the left one is Yugu1, and the right one is sistl2. (C) The first leaf of Yugu1 and the mutant. (D) The third leaf of Yugu1 and the mutant. (E) The seeds of Yugu1 and sistl2. (F) Heading stage phenotypes of Yugu1 and sistl2. (G) The mature leaves of Yugu1 and sistl2 of heading stage. (H) The leaf length and leaf width were clearly reduced in addition to the panicle size, panicle weight, and the seed setting percentage of Yugu1 and sistl2. The leaves used for size measurement are mature top second leaves of Yugu1 and sistl2 at heading stage, respectively. The means and standard deviations were obtained from five independent leaf samples. Statistical analysis was performed with the t-test.

Back      Print      View: 425

[ Other News ]___________________________________________________
  • Egypt Holds Workshop on New Biotech Applications
  • UN Agencies Urge Transformation of Food Systems
  • Taiwan strongly supports management of brown planthopper—a major threat to rice production
  • IRRI Director General enjoins ASEAN states to invest in science for global food security
  • Rabies: Educate, vaccinate and eliminate
  • “As a wife I will help, manage, and love”: The value of qualitative research in understanding land tenure and gender in Ghana
  • CIP Director General Wells Reflects on CIP’s 45th Anniversary
  • Setting the record straight on oil palm and peat in SE Asia
  • Why insect pests love monocultures, and how plant diversity could change that
  • Researchers Modify Yeast to Show How Plants Respond to Auxin
  • GM Maize MIR162 Harvested in Large Scale Field Trial in Vinh Phuc, Vietnam
  • Conference Tackles Legal Obligations and Compensation on Biosafety Regulations in Vietnam
  • Iloilo Stakeholders Informed about New Biosafety Regulations in PH
  • Global wheat and rice harvests poised to set new record
  • GM Maize Harvested in Vietnam Field Trial Sites
  • New label for mountain products puts premium on biological and cultural diversity
  • The Nobel Prize in Physiology or Medicine 2016
  • Shalabh Dixit: The link between rice genes and rice farmers
  • People need affordable food, but prices must provide decent livelihoods for small-scale family farmers
  • GM Seeds Market Growth to Increase through 2020 Due to Rise in Biofuels Use

 

Designed & Powered by WEBSO CO.,LTD