Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7479518

Research Team Explains How Plants Can Grow on Saline Soils
Sunday, 2016/07/24 | 06:25:15

Scientists from the University of Würzburg in Germany have examined how plants regulate their salt intake. Salt consists of the cation sodium and the anion chloride. Higher doses of chloride in saline soils have toxic effects on plant development. However, plants need the anion nitrate as a nitrogen source to build proteins and multiply their DNA. Würzburg plant scientists Dietmar Geiger and Rainer Hedrich studied whether and how plants are capable of distinguishing between the nutrient nitrate and the harmful chloride.

 

The researchers identified the two anion channels SLAH1 and SLAH3 found in plant cells, which are responsible for regulating the passage of nitrate and chloride. Working with a Spanish group, the scientists studied genetically modified plants in which SLAH1 or SLAH3 is missing. The sap of these plants ascending to the shoot only contained half the amount of chloride ions. The nitrate content, however, remained unchanged, giving the conclusion that both anion channels regulate the entry Model of chloride avoidance on salt-affected soils (Graphic: Dietmar Geiger)of chloride into the shoot.

 

The researchers found SLAH1 incapable of conducting anions, and SLAH3 mainly conducts nitrate. The contradiction between the nitrate and chloride contents in the sample plants and in the genetically modified plants was resolved when the two anion channels were brought together, forming a functional complex. Each time SLAH1 enters the complex, the anion filter in SLAH3 will switch from nitrate to chloride and vice versa. The role of this switch was determined by the Spanish team. They observed that the higher the salt load the roots of the sample plants were exposed to, the more SLAH1 was withdrawn from the anion channel complex. In the process, the chloride-conducting complex gradually evolves into a nitrate-conducting status, allowing the plant to maintain its nitrate intake as a vital source of nitrogen without taking damage by the salinization-related increase in chloride concentration.

 

For more details, read the news release at the University of Würzburg website.

Back      Print      View: 601

[ Other News ]___________________________________________________
  • Beyond genes: Protein atlas scores nitrogen fixing duet
  • 2016 Borlaug CAST Communication Award Goes to Dr. Kevin Folta
  • FAO and NEPAD team up to boost rural youth employment in Benin, Cameroon, Malawi and Niger
  • Timely seed distributions in Ethiopia boost crop yields, strengthen communities’ resilience
  • Parliaments must work together in the final stretch against hunger
  • Empowering women farmers in the polder communities of Bangladesh
  • Depression: let’s talk
  • As APEC Concludes, CIP’s Food Security and Climate Smart Agriculture on Full Display
  • CIAT directly engages with the European Cocoa Industry
  • Breeding tool plays a key role in program planning
  • FAO: Transform Agriculture to Address Global Challenges
  • Uganda Holds Banana Research Training for African Scientists and Biotechnology Regulators
  • US Congress Ratifies Historic Global Food Security Treaty
  • Fruit Fly`s Genetic Code Revealed
  • Seminar at EU Parliament Tackles GM Crops Concerns
  • JICA and IRRI ignites a “seed revolution” for African and Asian farmers
  • OsABCG26 Vital in Anther Cuticle and Pollen Exine Formation in Rice
  • Akira Tanaka, IRRI’s first physiologist, passes away
  • WHO calls for immediate safe evacuation of the sick and wounded from conflict areas
  • Farmer Field School in Tonga continues to break new ground in the Pacific for training young farmers

 

Designed & Powered by WEBSO CO.,LTD