Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  4005525

Scientists Re-evaluate Nutrient Uptake of Modern Corn
Sunday, 2013/04/28 | 18:52:28

Researchers from the University of Illinois Crop Physiology Laboratory have been re-evaluating nutrient uptake and partitioning in modern corn hybrids as many current nutrient recommendations, developed decades ago using outdated agronomic management practices and lower-yielding, non-transgenic hybrids, may need some adjustments.

 

The study examined six hybrids, each with transgenic insect protection, at two Illinois locations, DeKalb and Urbana. Researchers sampled plant tissues at six incrementally spaced growth stages. They separated them into their different fractions (leaves, stems, cobs, grain) to determine season-long nutrient accumulation, utilization, and movement.

 

Although maximum uptake rates were found to be nutrient-specific, they generally occurred during late vegetative growth. This was also the period of greatest dry matter production, an approximate 10-day interval from V10 to V14. Relative to total uptake, however, uptake of phosphorus (P), sulfur (S), and zinc (Zn) was greater during grain fill than during vegetative growth. The study also showed that the key periods for micronutrient uptake were narrower than those for macronutrients.

 

See the University of Illinois' news release at http://news.aces.illinois.edu/news/fertility-needs-high-yielding-corn-production.

 

Back      Print      View: 831

[ Other News ]___________________________________________________
  • Transgenic pig carrying green fluorescent proteasomes
  • Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability
  • Genetic analysis and mapping of genes for resistance to multiple strains of Soybean mosaic virus in a single resistant soybean accession PI 96983
  • Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells
  • IRRI Scientists Develop Super Salt-tolerant Rice
  • A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48°C high temperature at seedling stage.
  • Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality
  • Gene similarity networks provide tools for understanding eukaryote origins and evolution
  • Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3
  • Bacillus subtilis biofilm induction by plant polysaccharides
  • A Dominant Major Locus in Chromosome 9 of Rice (Oryza sativa L.) Confers Tolerance to 48 °C High Temperature at Seedling Stage
  • Scientists Identify Proton Pathway in Photosynthesis
  • Scientists Find Way to Increase Phosphorus Content in Wheat
  • De novo next-generation sequencing, assembling and annotation of Arachis hypogaea L. Spanish botanical type whole plant transcriptome
  • Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize
  • Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice
  • Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars
  • Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis
  • USDA Approves Testing of Pink Pineapple
  • Characterization and fine mapping of the rice premature senescence mutant ospse1
Designed & Powered by WEBSO CO.,LTD