Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  13
 Total visitors :  7455556

Transcriptional Activation via CRISPR-dCas9 Mimics Overexpression Phenotypes in Arabidopsis
Wednesday, 2017/08/09 | 08:05:57

The CRISPR-Cas9 system allows effective gene modification through RNA-guided DNA targeting. Researchers have significantly altered Cas9, resulting in partially or completely deactivated Cas9. The deactivated Cas9 (dCas9) offers a platform to regulate transcriptional expression with the addition of an activator or repressor.

 

The team of Jong-Jin Park of the Oak Ridge National Laboratory redesigned a CRISPR-Cas9 activation system by adding several activators (p65 transactivating subunit of NF-kappa B and heat-shock factor 1, or HSF activator) to the dCas9 for application in plants. The redesigned CRISPR-Cas9 activation system was tested in Arabidopsis to increase endogenous transcriptional levels of production of anthocyanin pigment 1 (PAP1) and Arabidopsis thaliana vacuolar H+-pyrophosphatase (AVP1).

 

The expression of PAP1 was increased significantly and the activated plants exhibited purple leaves similar to that of PAP1 overexpressing lines. The AVP1 gene expression was also significantly increased in the CRISPR-edited plants. Compared to wild types, the AVP1 activated plants had increased leaf numbers, larger single-leaf areas and improved tolerance to drought stress, similar phenotypes to AVP1 overexpressors.

 

Therefore, the redesigned CRISPR-Cas9 activation system containing modified p65-HSF provides a simple approach for producing activated plants by upregulating endogenous transcription levels.

 

For more information on the study, read the article in PLOS One.

Back      Print      View: 499

[ Other News ]___________________________________________________
  • Brazil offers an extra US $ 17 million to FAO projects as new government takes helm
  • 2014 in review – Another busy year
  • Growing concern for South Sudan`s herders as conflict displaces millions of cattle
  • Biotech and Traditional Farming are Compatible Approaches to Sustainable Agri, Study
  • Report: Weed Control Changes and Herbicide Tolerant Crops in the USA 1996-2012
  • New Study Provides Better Understanding of the Genetic Basis for Drought Tolerant Soybeans
  • Wheat Gene Increases Blight Resistance of American Chestnut Trees
  • China Approves Imports of Biotech Crops
  • IndoBIC Holds Media Visit to Seed Industries in East Java
  • FAO food price index drops in December
  • Origin Receives Biosafety Certificate Renewal for its GM Phytase Corn in China
  • Biotech Rice Expressing CP4-EPSPS Shows Glyphosate Tolerance
  • UK Govt Adviser Calls for Use of Agri Technologies that ``Produce More with Less``
  • Genetic diversity a hidden tool in coping with climate change
  • Cutting down on Amazon deforestation: Watch, think, and act
  • USDA Deregulates Dicamba-Tolerant Cotton and Soybean
  • NAS Holds Workshop on Communicating about GMOs
  • Cell Wall Traits for a FHB Resistant Durum Wheat
  • Ag Biotech Vietnam Conducts Biotech Quiz Contest at Northwestern University
  • Viet Nam Launches National Zero Hunger Challenge

 

Designed & Powered by WEBSO CO.,LTD