Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  1
 Total visitors :  4505924

An efficient gene disruption method for the woody plant pathogen Botryosphaeria dothidea

We established a gene disruption (GD) method based on gene homologous recombination (GHR) for B. dothidea using polyethylene glycol-mediated protoplast transformation. The results showed that a GHR cassette gave much higher GD efficiency than a GHR plasmid. A high GD efficiency (1.3 ± 0.14 per 106 protopasts) and low frequency of random insertions were achieved with a DNA

Bao-Zhu Dong & Li-Yun Guo 

 

Abstract

Background

Botryosphaeria dothidea causes apple white rot and infects many tree plants. Genome data for B. dothidea are available and many pathogenesis-related genes have been predicted. However, a gene manipulation method is needed to study the pathogenic mechanism of B. dothidea.

Results

We established a gene disruption (GD) method based on gene homologous recombination (GHR) for B. dothidea using polyethylene glycol-mediated protoplast transformation. The results showed that a GHR cassette gave much higher GD efficiency than a GHR plasmid. A high GD efficiency (1.3 ± 0.14 per 106 protopasts) and low frequency of random insertions were achieved with a DNA cassette quantity of 15 μg per 106 protoplasts. Moreover, we successfully disrupted genes in two strains. Bdo_05381-disrupted transformants produced less melanin, whereas the Bdo_02540-disrupted transformant showed a slower growth rate and a stronger resistance to Congo red.

Conclusion

The established GD method is efficient and convenient and has potential for studying gene functions and the pathogenic mechanisms of B. dothidea and other coenocytic fungi.

See https://bmcbiotechnol.biomedcentral.com/articles/10.1186/s12896-020-00608-z

 

Figure 2:  Verification of Bdo_05381-disrupted B. dothidea HTLW03 transformants by PCR. Transformants were analyzed with four PCR amplifications. The lanes marked with “+” correspond to the correct GD transformants with Bdo_05381 upstream and downstream fragments that were the correct size, an amplicon that was 400bp longer than that of Bdo_05381, and no open reading frame fragment

Trở lại      In      Số lần xem: 53

[ Tin tức liên quan ]___________________________________________________
Designed & Powered by WEBSO CO.,LTD