Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  40
 Total visitors :  7667117

A new regulator of vesicle trafficking in plants

A protein that transports the simple chemical choline plays a major role in vesicle trafficking, ion homeostasis, and growth and development in plants, according to two new studies publishing 28 December in the open-access journal PLOS Biology, by Dai-Yin Chao of the Shanghai Institutes for Biological Sciences, China, and Sheng Luan of the University of California, Berkeley, and co-workers.

A protein that transports the simple chemical choline plays a major role in vesicle trafficking, ion homeostasis, and growth and development in plants, according to two new studies publishing 28 December in the open-access journal PLOS Biology, by Dai-Yin Chao of the Shanghai Institutes for Biological Sciences, China, and Sheng Luan of the University of California, Berkeley, and co-workers.

 

The protein, called transporter-like 1 (CTL1), had been previously identified as essential for formation of sieve plates, cell wall perforations that regulate passage of materials in plant phloem. But the mechanism of its function, and whether it played other roles in , was unknown. Chao and colleagues found CTL1 while screening for genes that control ion homeostasis in the model plant, Arabidopsis thaliana. They found that loss of CTL1 in the root led to ion disturbances in leaves, and deformations in plasmodesmata, a type of intercellular channel, in the root. CTL1 mutation also altered the distribution of ion transporters, which, combined with previous work localizing CTL1 to the trans-Golgi network, led the authors to investigate whether CTL1 played a direct role in vesicle trafficking. Sure enough, they showed that loss of CTL1 disrupted localization of multiple proteins, including an auxin transporter - auxin is the main growth hormone in plants.

Luan and colleagues began by mapping the distribution of CTL1 in Arabidopsis, and found that it was ubiquitous but was highest where auxin was highest: in the growing tips, in the vascular tissue, and in the "apical hook" that seedlings lead with as they push up through the soil. Intracellularly, they too found that CTL1 localized to the trans-Golgi network, and appeared to control trafficking to and from the plasma membrane; the authors observed that without CTL1, auxin transporters were misdirected, and the plant displayed the classic signs of auxin loss, including lack of cell elongation.



Read more at: https://phys.org/news/2017-12-vesicle-trafficking.html#jCp

A protein that transports the simple chemical choline plays a major role in vesicle trafficking, ion homeostasis, and growth and development in plants, according to two new studies publishing 28 December in the open-access journal PLOS Biology, by Dai-Yin Chao of the Shanghai Institutes for Biological Sciences, China, and Sheng Luan of the University of California, Berkeley, and co-workers.

 

The protein, called transporter-like 1 (CTL1), had been previously identified as essential for formation of sieve plates, cell wall perforations that regulate passage of materials in plant phloem. But the mechanism of its function, and whether it played other roles in , was unknown. Chao and colleagues found CTL1 while screening for genes that control ion homeostasis in the model plant, Arabidopsis thaliana. They found that loss of CTL1 in the root led to ion disturbances in leaves, and deformations in plasmodesmata, a type of intercellular channel, in the root. CTL1 mutation also altered the distribution of ion transporters, which, combined with previous work localizing CTL1 to the trans-Golgi network, led the authors to investigate whether CTL1 played a direct role in vesicle trafficking. Sure enough, they showed that loss of CTL1 disrupted localization of multiple proteins, including an auxin transporter - auxin is the main growth hormone in plants.

Luan and colleagues began by mapping the distribution of CTL1 in Arabidopsis, and found that it was ubiquitous but was highest where auxin was highest: in the growing tips, in the vascular tissue, and in the "apical hook" that seedlings lead with as they push up through the soil. Intracellularly, they too found that CTL1 localized to the trans-Golgi network, and appeared to control trafficking to and from the plasma membrane; the authors observed that without CTL1, auxin transporters were misdirected, and the plant displayed the classic signs of auxin loss, including lack of cell elongation.



Read more at: https://phys.org/news/2017-12-vesicle-trafficking.html#jCp

A protein that transports the simple chemical choline plays a major role in vesicle trafficking, ion homeostasis, and growth and development in plants, according to two new studies publishing 28 December in the open-access journal PLOS Biology, by Dai-Yin Chao of the Shanghai Institutes for Biological Sciences, China, and Sheng Luan of the University of California, Berkeley, and co-workers.

 

The protein, called choline transporter-like 1 (CTL1), had been previously identified as essential for formation of sieve plates, cell wall perforations that regulate passage of materials in plant phloem. But the mechanism of its function, and whether it played other roles in plants, was unknown. Chao and colleagues found CTL1 while screening for genes that control ion homeostasis in the model plant, Arabidopsis thaliana. They found that loss of CTL1 in the root led to ion disturbances in leaves, and deformations in plasmodesmata, a type of intercellular channel, in the root. CTL1 mutation also altered the distribution of ion transporters, which, combined with previous work localizing CTL1 to the trans-Golgi network, led the authors to investigate whether CTL1 played a direct role in vesicle trafficking. Sure enough, they showed that loss of CTL1 disrupted localization of multiple proteins, including an auxin transporter - auxin is the main growth hormone in plants.

Luan and colleagues began by mapping the distribution of CTL1 in Arabidopsis, and found that it was ubiquitous but was highest where auxin was highest: in the growing tips, in the vascular tissue, and in the "apical hook" that seedlings lead with as they push up through the soil. Intracellularly, they too found that CTL1 localized to the trans-Golgi network, and appeared to control trafficking to and from the plasma membrane; the authors observed that without CTL1, auxin transporters were misdirected, and the plant displayed the classic signs of auxin loss, including lack of cell elongation.


Read more at: https://phys.org/news/2017-12-vesicle-trafficking.html#jCp

Trở lại      In      Số lần xem: 420

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD