Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7515568

Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system

The CRISPR/Cas9 system has recently been engineered to confer resistance to geminiviruses in plants. However, we show here that the usefulness of this antiviral strategy is undermined by off-target effects identified by deep sequencing in Arabidopsis. We construct two virus-inducible CRISPR/Cas9 vectors that efficiently inhibit beet severe curly top virus (BSCTV) accumulation in both transient assays (Nicotiana benthamiana) and transgenic lines (Arabidopsis).

Xiang Ji, Xiaomin Si, Yi Zhang, Huawei Zhang, Feng Zhang and Caixia Gao

Genome Biology201819:197 https://doi.org/10.1186/s13059-018-1580-4

Published: 15 November 2018

ABSTRACT

The CRISPR/Cas9 system has recently been engineered to confer resistance to geminiviruses in plants. However, we show here that the usefulness of this antiviral strategy is undermined by off-target effects identified by deep sequencing in Arabidopsis. We construct two virus-inducible CRISPR/Cas9 vectors that efficiently inhibit beet severe curly top virus (BSCTV) accumulation in both transient assays (Nicotiana benthamiana) and transgenic lines (Arabidopsis). Deep sequencing detects no off-target effect in candidate sites of the transgenic Arabidopsis. This kind of virus-inducible genome-editing system should be widely applicable for generating virus-resistant plants without off-target costs.

 

See https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1580-4

 

Figure 1: Off-target effects generated by overexpression of the CRISPR/Cas9 system, and validation of the VIGE system in transient assays based on Nicotiana benthamianaa Off-target frequencies detected by deep sequencing in transgenic C3 and non-transgenic plants (n = 3). The genomic DNA of leaves was extracted for analysis. For each site, mismatches relative to the on-target site are shown by colored boxes, and bases in the spacer sequence are numbered from 1 (most PAM-proximal) to 20 (most PAM-distal). b Diagram of the virus inducible system that confers geminivirus resistance with high specificity. c Expression of the pV86-GUS and pC86-GUS reporter constructs. Leaves were stained with X-gluc 4, 5, and 6 days after virus infection. Scale bar, 1 cm. d Detection of BSCTV DNA accumulation level of individually expressed pCambia–BSCTV vector (left panel) and the Cas9 transcription level of inducible vectors (pV86-401 or pC86-401) co-expressed with pCambia–BSCTV (right panel) from 0 dpi to 4 dpi (n = 3). e Phenotypes reflecting the activities of the inducible systems (pV86-401 and pC86-401) containing B7, B15, C3, and C11 sgRNAs targeting the BSCTV genome in tobacco plants. White arrows indicate systemic leaves with altered phenotypes after BSCTV infection. Scale bar, 2 cm. f Virus loads in local and systemic leaves (n = 3) analyzed by quantitative PCR. Values are means ± S.D. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, no significant difference by two-tailed Student’s t test.

Trở lại      In      Số lần xem: 469

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD