Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  19
 Total visitors :  7666619

Dissecting the genetic control of seed coat color in a RIL population of common bean (Phaseolus vulgaris L.)

Seed coat color is an important characteristic of common bean (Phaseolus vulgaris L.) associated with the marketability of dry bean cultivars, quality and nutritional characteristics of seed, as well as response to pathogens. In this study, the genetic control of seed coat color in a recombinant inbred line population (175 lines) obtained from the cross ‘TU’ × ‘Musica’ was investigated. Phenotypic segregation fitted 1:1 for white vs. nonwhite, and 3:1 for brown versus black, indicating the involvement of three independent genes, one controlling white color and two (with epistatic interaction) controlling black color.

Carmen García-FernándezAna Campa & Juan Jose Ferreira

Theoretical and Applied Genetics November 2021; vol. 134: 3687–3698

Key message

Three genes associated with the seed coat color in a TU/Musica RIL population were located on a genetic map, and two candidate genes proposed to control black seed coat in the TU genotype were characterized.

Abstract

Seed coat color is an important characteristic of common bean (Phaseolus vulgaris L.) associated with the marketability of dry bean cultivars, quality and nutritional characteristics of seed, as well as response to pathogens. In this study, the genetic control of seed coat color in a recombinant inbred line population (175 lines) obtained from the cross ‘TU’ × ‘Musica’ was investigated. Phenotypic segregation fitted 1:1 for white vs. nonwhite, and 3:1 for brown versus black, indicating the involvement of three independent genes, one controlling white color and two (with epistatic interaction) controlling black color. Using a genetic map built with 842 SNPs, the gene responsible for the white seed coat was mapped on the linkage group Pv07, in the position previously described for the P gene. For the black seed coat phenotype, two genes were mapped to the beginning of chromosomes Pv06 and Pv08, in the positions estimated for the V gene and the complex C locus, respectively, by classical studies. The involvement of these two genomic regions was verified through two crosses between three selected RILs exhibiting complementary and dominant inheritance, in which the TU alleles for both genes resulted in a black phenotype. Two genes involved in the anthocyanin biosynthesis pathway were proposed as candidate genes: Phvul.006G018800 encoding a flavonoid 3′5’hydroxylase and Phvul.008G038400 encoding MYB113 transcription factor. These findings add knowledge to the complex network of genes controlling seed coat color in common bean as well as providing genetic markers to be used in future genetic analysis or plant breeding.

 

See: https://link.springer.com/article/10.1007/s00122-021-03922-y

Trở lại      In      Số lần xem: 185

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD