Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  10
 Total visitors :  7671220

Ectopic expression of MYB repressor GmMYB3a improves drought tolerance and productivity of transgenic peanuts (Arachis hypogaea L.) under conditions of water deficit

Peanut is widely grown and provides protein and edible oil for millions of people. Peanut growth and productivity are frequently negatively affected by abiotic and biotic environmental factors. However, the research on improving peanut germplasm resources by genetic transformation is very limited. Here, the novel R2R3-MYB repressor GmMYB3a was introduced into peanut plants by Agrobacterium-mediated transformation for the first time for thorough evaluation of the function of GmMYB3a in drought stress plant responses. We generated GmMYB3a-transgenic peanut plants.

Yuxuan HeShujing MuZhongguo HeBaizhong Wang & Yufa Li

Transgenic Research volume 29:563–574 (November 8 2020)

Abstract

Peanut is widely grown and provides protein and edible oil for millions of people. Peanut growth and productivity are frequently negatively affected by abiotic and biotic environmental factors. However, the research on improving peanut germplasm resources by genetic transformation is very limited. Here, the novel R2R3-MYB repressor GmMYB3a was introduced into peanut plants by Agrobacterium-mediated transformation for the first time for thorough evaluation of the function of GmMYB3a in drought stress plant responses. We generated GmMYB3a-transgenic peanut plants. The GmMYB3a-overexpressing lines showed significantly improved physiological responses and no yield loss non-transgenic plants, in terms of survival rates. Thus, the GmMYB3a-overexpressing plants showed better photosynthetic performance, higher relative water content, and greater water use efficiency, demonstrating their adaptive capacity to water deficit. We conclude that overexpression of GmMYB3a can improve drought tolerance and productivity in peanut.

 

See https://link.springer.com/article/10.1007/s11248-020-00220-z

Trở lại      In      Số lần xem: 204

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD