Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  57
 Total visitors :  7670341

Identification of QTL for resistance to leaf blast in foxtail millet by genome re-sequencing analysis

Leaf blast disease of foxtail millet (Setaria italica) is caused by Pyricularia spp., can infect all the aboveground parts of plants, and is the most frequently observed blast disease in China. Lack of information on genetic control of disease resistance impedes developing leaf blast-resistant cultivars. An F6 recombinant inbred line (RIL) population from the cross Yugu 5 × Jigu 31 was phenotyped for its reactions to leaf blast in six field trials in the naturally diseased nurseries.

Bohong TianLixin ZhangYanli LiuPeipei WuWei WangYue Zhang & Hongjie Li

Theoretical and Applied Genetics February 2021; vol. 134:743–754

Key message

Three QTL for resistance to leaf blast were identified on chromosomes 1, 2, and 8 of the foxtail millet cultivar Yugu 5.

Abstract

Leaf blast disease of foxtail millet (Setaria italica) is caused by Pyricularia spp., can infect all the aboveground parts of plants, and is the most frequently observed blast disease in China. Lack of information on genetic control of disease resistance impedes developing leaf blast-resistant cultivars. An F6 recombinant inbred line (RIL) population from the cross Yugu 5 × Jigu 31 was phenotyped for its reactions to leaf blast in six field trials in the naturally diseased nurseries. An ultra-density genetic linkage map was constructed using 35,065 single nucleotide polymorphism (SNP) markers generated by sequencing of the RIL population. Three QTL, QLB-czas1QLB-czas2, and QLB-cazas8, were detected in the genomic intervals of 276.6 kb, 1.62 Mb, and 1.75 Mb on chromosomes 1, 2, and 8 of Yugu 5, which explained 14–17% (2 environments), 9% (5 environments), and 12–20% (6 environments) of the phenotypic variations. Bulked segregant analysis (BSA) and RNA sequencing (BSR-Seq) method identified common SNPs that fell in the genomic region of QLB-czas8, providing additional evidence of localization of this QTL. Three and 19 predicted genes were annotated to be associated with disease resistance in the genomic intervals for QLB-czas2 and QLB-czas8. Due to their unique positions, these QTL appear to be new loci conferring resistance to leaf blast. The identification of these new resistance QTL will be useful in cultivar development and the study of the genetic control of blast resistance in foxtail millet.

 

See https://link.springer.com/article/10.1007/s00122-020-03730-w

Trở lại      In      Số lần xem: 224

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD