Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  43
 Total visitors :  7667663

Identification of glutathione transferase gene associated with partial resistance to Sclerotinia stem rot of soybean using genome-wide association and linkage mapping

Sclerotinia stem rot (SSR), caused by the fungus Sclerotinia sclerotiorum, is one of the most devastating diseases in soybean (Glycine max (Linn.) Merr.) However, the genetic architecture underlying soybean resistance to SSR is poorly understood, despite several mapping and gene mining studies.  In the present study, the identification of quantitative trait loci (QTLs) involved in the resistance to S. sclerotiorum was conducted in two segregating populations

Zou JiananWenjing LiYuting ZhangWei SongHaipeng JiangJingyun ZhaoYuhang ZhanWeili TengLijuan QiuXue Zhao & Yingpeng Han

Theoretical and Applied Genetics August 2021; vol. 134: 2699–2709

Key message

Association and linkage mapping techniques were used to identify and verify single nucleotide polymorphisms (SNPs) associated with Sclerotinia sclerotiorum resistance. A novel resistant gene, GmGST , was cloned and shown to be involved in soybean resistance to SSR.

Abstract

Sclerotinia stem rot (SSR), caused by the fungus Sclerotinia sclerotiorum, is one of the most devastating diseases in soybean (Glycine max (Linn.) Merr.) However, the genetic architecture underlying soybean resistance to SSR is poorly understood, despite several mapping and gene mining studies. In the present study, the identification of quantitative trait loci (QTLs) involved in the resistance to S. sclerotiorum was conducted in two segregating populations: an association population that consisted of 261 diverse soybean germplasms, and the MH population, derived from a cross between a partially resistant cultivar (Maple arrow) and a susceptible cultivar (Hefeng25). Three and five genomic regions affecting resistance were detected by genome-wide association study to control the lesion length of stems (LLS) and the death rate of seedling (DRS), respectively. Four QTLs were detected to underlie LLS, and one QTL controlled DRS after SSR infection. A major locus on chromosome (Chr.) 13 (qDRS13-1), which affected both DRS and LLS, was detected in both the natural population and the MH population. GmGST, encoding a glutathione S-transferase, was cloned as a candidate gene in qDRS13-1. GmGST was upregulated by the induction of the partially resistant cultivar Maple arrow. Transgenic experiments showed that the overexpression of GmGST in soybean increased resistance to S. sclerotiorum and the content of soluble pigment in stems of soybean. The results increase our understanding of the genetic architecture of soybean resistance to SSR and provide a framework for the future marker-assisted breeding of resistant soybean cultivars.

 

See: https://link.springer.com/article/10.1007/s00122-021-03855-6

Trở lại      In      Số lần xem: 240

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD