Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  52
 Total visitors :  7670361

Mapping and identification of CsSh5.1, a gene encoding a xyloglucan galactosyltransferase required for hypocotyl elongation in cucumber (Cucumis sativus L.)

Hypocotyl growth is a vital process in seedling establishment. Hypocotyl elongation after germination relies more on longitudinal cell elongation than cell division. Cell elongation is largely determined by the extensibility of the cell wall. Here, we identified a spontaneous mutant in cucumber (Cucumis sativus L.), sh5.1, which exhibits a temperature-insensitive short hypocotyl phenotype. Genetic analysis showed that the phenotype of sh5.1 was controlled by a recessive nuclear gene. CsSh5.1 was mapped to a 57.1 kb interval on chromosome 5, containing eight predicted genes.

Keyan Zhang, Junsong Pan, Yue Chen, Ying Wei, Hui Du, Jingxian Sun, Duo Lv, Haifan Wen, Huanle He, Gang Wang & Run Cai

Theoretical and Applied Genetics February 2021; Vol.134(2): 435 - 451

 

Photo: ©FAO/Luc GenotKey message

 

CsSh5.1, which controls hypocotyl elongation under high temperature conditions in cucumber, was mapped to a 57.1 kb region on chromosome 5 containing a candidate gene encoding a xyloglucan galactosyltransferase.

 

Abstract

 

Hypocotyl growth is a vital process in seedling establishment. Hypocotyl elongation after germination relies more on longitudinal cell elongation than cell division. Cell elongation is largely determined by the extensibility of the cell wall. Here, we identified a spontaneous mutant in cucumber (Cucumis sativus L.), sh5.1, which exhibits a temperature-insensitive short hypocotyl phenotype. Genetic analysis showed that the phenotype of sh5.1 was controlled by a recessive nuclear gene. CsSh5.1 was mapped to a 57.1 kb interval on chromosome 5, containing eight predicted genes. Sequencing analysis revealed that the Csa5G171710 is the candidate gene of CsSh5.1, which was further confirmed via co-segregation analysis and genomic DNA sequencing in natural cucumber variations. The result indicated that hypocotyl elongation might be controlled by this gene. CsSh5.1 encodes a xyloglucan galactosyltransferase that specifically adds galactose to xyloglucan and forms galactosylated xyloglucans, which determine the strength and extensibility of the cell walls. CsSh5.1 expression in wild-type (WT) hypocotyl was significantly higher than that in sh5.1 hypocotyl under high temperature, suggesting its important role in hypocotyl cell elongation under high temperature. The identification of CsSh5.1 is helpful for elucidating the function of xyloglucan galactosyltransferase in cell wall expansion and understanding the mechanism of hypocotyl elongation in cucumber.

 

See https://link.springer.com/journal/122/volumes-and-issues/134-2

Trở lại      In      Số lần xem: 167

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD