Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7516499

Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance

Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. In tobacco (Nicotiana tabacum ‘Xanthi’), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels.

Aung Htay Naing, Kyeung Il Park, Trinh Ngoc Ai, Mi Young Chung, Jeung Sul Han, Young-Wha Kang, Ki Byung Lim and Chang Kil Kim

BMC Plant Biology; 23 March 2017, DOI: 10.1186/s12870-017-1015-5

Abstract

Background

Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation.

Results

In tobacco (Nicotiana tabacum ‘Xanthi’), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines displayed different anthocyanin colors (e.g., pale red: T0-P, red: T0-R, and strong red: T0-S), resulting from varying levels of biosynthetic gene transcripts. Under salt stress, the T2 generation had higher total polyphenol content, radical (DPPH, ABTS) scavenging activities, antioxidant-related gene expression, as well as overall greater salt and drought tolerance than wild type (WT).

Conclusion

We propose that Del overexpression elevates transcript levels of anthocyanin biosynthetic and antioxidant-related genes, leading to enhanced anthocyanin production and antioxidant activity. The resultant increase of anthocyanin and antioxidant activity improves abiotic stress tolerance.

 

See: http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-017-1015-5

 

Fig. 1

Comparing anthocyanin-content phenotypes across (a) three independent Del-overexpressing transgenic lines (in vitro stage) and across (b) WT and transgenic lines (in greenhouse conditions). All lines exhibited different phenotypes. T0-P, T0-R, and T0-S refer to pale red, red, and strong red transgenic plants in the T0 generation, respectively

Trở lại      In      Số lần xem: 487

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD