Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  53
 Total visitors :  7667736

Temperature Resilient Crops Now an "Achievable Dream"

A new study reveals that breeding temperature resilient crops can now be achieved. A research conducted at John Innes Centre (JIC) has established a genetic link between increased temperature and the problem of "pod shatter" (premature seed dispersal) in oilseed rape. The research, led by Dr. Vinod Kumar and Professor Lars Østergaard, reveals that pod shatter is enhanced at higher temperature across diverse species in the Brassicaceae family which also includes cauliflower, broccoli, and kale.

A new study reveals that breeding temperature resilient crops can now be achieved. A research conducted at John Innes Centre (JIC) has established a genetic link between increased temperature and the problem of "pod shatter" (premature seed dispersal) in oilseed rape. The research, led by Dr. Vinod Kumar and Professor Lars Østergaard, reveals that pod shatter is enhanced at higher temperature across diverse species in the Brassicaceae family which also includes cauliflower, broccoli, and kale.

 

To study the effects of temperature on seed dispersal, Dr. Xinran Li, a postdoctoral researcher, monitored fruit development in Arabidopsis at three different temperatures 17, 22 and 27 degrees centigrade. This showed that cell wall stiffened at the tissue where pod shatter takes place, was enhanced by increasing temperature, and occurs across the Brassicaceae family, including oilseed rape.

 

The team established the genetic mechanism which organizes plant response to higher temperatures. Previous studies have shown that pod shatter is controlled by a gene called INDEHISCENT (IND). This study reveals that IND is under the control of a thermo-sensory mechanism in which a histone called H2A.Z is a key player.

 

For more, read the JIC News.

 

Description: https://www.jic.ac.uk/media/cms_page_media/2018/2/12/oilseed%20rape%20seed%20dispersal.jpg

Figure: Pod shatter in oilseed rape - problem for farmers worldwide. Picture. Andrew Davis John Innes Centre

Trở lại      In      Số lần xem: 442

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD