Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  19
 Total visitors :  7670763

Transgenic chickpea (Cicer arietinum L.) harbouring AtDREB1a are physiologically better adapted to water deficit

Four transgenic chickpea lines harbouring stress inducible AtDREB1a were generated with transformation efficiency of 0.1%. The integration, transmission and regulated expression were confirmed by Polymerase Chain Reaction (PCR), Southern Blot hybridization and Reverse Transcriptase polymerase chain reaction (RT-PCR), respectively. Transgenic chickpea lines exhibited higher relative water content, longer chlorophyll retention capacity and higher osmotic adjustment under severe drought stress (stress level 4), as compared to control.

Alok DasPartha Sarathi BasuManoj KumarJamal AnsariAlok ShuklaShallu ThakurParul SinghSubhojit DattaSushil Kumar ChaturvediM S SheshshayeeKailash Chandra Bansal & Narendra Pratap Singh

BMC Plant Biology volume 21, Article number: 39 (2021)

Background

Chickpea (Cicer arietinum L.) is the second most widely grown pulse and drought (limiting water) is one of the major constraints leading to about 40–50% yield losses annually. Dehydration responsive element binding proteins (DREBs) are important plant transcription factors that regulate the expression of many stress-inducible genes and play a critical role in improving the abiotic stress tolerance. Transgenic chickpea lines harbouring transcription factor, Dehydration Responsive Element-Binding protein 1A from Arabidopsis thaliana (AtDREB1a gene) driven by stress inducible promoter rd29a were developed, with the intent of enhancing drought tolerance in chickpea. Performance of the progenies of one transgenic event and control were assessed based on key physiological traits imparting drought tolerance such as plant water relation characteristics, chlorophyll retention, photosynthesis, membrane stability and water use efficiency under water stressed conditions.

Results

Four transgenic chickpea lines harbouring stress inducible AtDREB1a were generated with transformation efficiency of 0.1%. The integration, transmission and regulated expression were confirmed by Polymerase Chain Reaction (PCR), Southern Blot hybridization and Reverse Transcriptase polymerase chain reaction (RT-PCR), respectively. Transgenic chickpea lines exhibited higher relative water content, longer chlorophyll retention capacity and higher osmotic adjustment under severe drought stress (stress level 4), as compared to control. The enhanced drought tolerance in transgenic chickpea lines were also manifested by undeterred photosynthesis involving enhanced quantum yield of PSII, electron transport rate at saturated irradiance levels and maintaining higher relative water content in leaves under relatively severe soil water deficit. Further, lower values of carbon isotope discrimination in some transgenic chickpea lines indicated higher water use efficiency. Transgenic chickpea lines exhibiting better OA resulted in higher seed yield, with progressive increase in water stress, as compared to control.

Conclusions

Based on precise phenotyping, involving non-invasive chlorophyll fluorescence imaging, carbon isotope discrimination, osmotic adjustment, higher chlorophyll retention and membrane stability index, it can be concluded that AtDREB1a transgenic chickpea lines were better adapted to water deficit by modifying important physiological traits. The selected transgenic chickpea event would be a valuable resource that can be used in pre-breeding or directly in varietal development programs for enhanced drought tolerance under parched conditions.

 

See: https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-020-02815-4

Figure 1:

Molecular analysis of transgenic chickpea lines a: PCR analyses of four transgenic chickpea events (T0); b: PCR analyses of transgenic chickpea progenies (T1) derived from E5c: PCR analyses of transgenic chickpea progenies (T1) derived from E17d: PCR analyses of transgenic chickpea progenies (T1) derived from E19e: PCR analyses of transgenic chickpea progenies (T1) derived from E22; [L1–100 bp DNA ladder and L2–1 kb DNA ladder]; f: Southern blot analysis (L: DIG-labelled DNA ladder; I-IV: Four independent transgenic chickpea lines E5, E17, E19 and E22 (T1 stage); N: Non-transformed chickpea (DCP 92–3); P: Positive control (Binary plasmid). g: RT-PCR analysis (L1: 1Kb plus DNA ladder; P: Positive control; N: Negative control; I-IV: Transgenic chickpea lines (T1 stage); V–X: Transgenic chickpea lines (T2 stage); NTC: No Template Control; C: RNA as Template; L2: 100 bp DNA ladder) [Mean SM 11.8% and mean LWP −0.82 MPa]

Trở lại      In      Số lần xem: 192

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD