Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  13
 Total visitors :  7592729

Biologists Show How Plants Turn Off Genes They Don`t Need
Thursday, 2017/08/24 | 08:27:11

Research led by University of Pennsylvania biologists has identified small DNA sequences in plant that act as signposts for shutting off gene activity, directing the placement of proteins that silence gene expression. Manipulation of these short DNA fragments promises plants with enhanced activation of certain traits.


Doris Wagner, senior author on the study and a professor in Penn's Department of Biology in the School of Arts & Sciences said that in plants, the part of the genome that is not needed, or that might be providing exactly the wrong information, needs to be shut off reliably, and this information is passed on to daughter cells. The short sequences could then be manipulated using gene-editing techniques to alter gene expression.


The study focused on Polycomb repression, a form of gene regulation. Polycomb protein complexes were first discovered in fruit flies, and in plants and mammals later. These protein complexes play important roles in determining cell identity, and helping plant cells remember, for example, that they are leaf cells or flower cells. Professor Wagner's team examined the Polycomb complex called PRC2. The team identified 170 segments of DNA in the plant species Arabidopsis thaliana that were likely to be Polycomb response elements (PREs). Then they identified 55 transcription factors, and verified that 30 of them physically interacted with PRC2.


The researchers went back to the 170 PRE candidates and identified short DNA sequences called cis motifs, which are what transcription factors recognize when they scan the genome for their target genes. They found two cis motifs that matched up with two of the previously identified transcription factors. Putting the cis motifs in to a plant cell genome revealed they were sufficient for recruiting Polycomb, making them essentially a synthetic PRE.


For more details, read the article in PennNews


Figure: Researchers have identified small DNA "signposts" that direct the silencing of genetic activity, allowing plants to move through different stages of development. Left image of plants: Compared to normal Arabidopsis plants, plants with mutations in the Polycomb complex (two plants on right) have leaves that curl upward and flower early. The same is true for mutants in the 2 transcription factor families (TFs) that recruit Polycomb. Right image: Two transcription factors, BPC and ZnF, bind to the genetic motifs shown to recruit the Polycomb protein complex, which silences genes.

Back      Print      View: 447

[ Other News ]___________________________________________________
  • Brazil offers an extra US $ 17 million to FAO projects as new government takes helm
  • 2014 in review – Another busy year
  • Growing concern for South Sudan`s herders as conflict displaces millions of cattle
  • Biotech and Traditional Farming are Compatible Approaches to Sustainable Agri, Study
  • Report: Weed Control Changes and Herbicide Tolerant Crops in the USA 1996-2012
  • New Study Provides Better Understanding of the Genetic Basis for Drought Tolerant Soybeans
  • Wheat Gene Increases Blight Resistance of American Chestnut Trees
  • China Approves Imports of Biotech Crops
  • IndoBIC Holds Media Visit to Seed Industries in East Java
  • FAO food price index drops in December
  • Origin Receives Biosafety Certificate Renewal for its GM Phytase Corn in China
  • Biotech Rice Expressing CP4-EPSPS Shows Glyphosate Tolerance
  • UK Govt Adviser Calls for Use of Agri Technologies that ``Produce More with Less``
  • Genetic diversity a hidden tool in coping with climate change
  • Cutting down on Amazon deforestation: Watch, think, and act
  • USDA Deregulates Dicamba-Tolerant Cotton and Soybean
  • NAS Holds Workshop on Communicating about GMOs
  • Cell Wall Traits for a FHB Resistant Durum Wheat
  • Ag Biotech Vietnam Conducts Biotech Quiz Contest at Northwestern University
  • Viet Nam Launches National Zero Hunger Challenge


Designed & Powered by WEBSO CO.,LTD