Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  9
 Total visitors :  8645992

Biomedical Engineers Use Silkworms to Enhance Organ-Like Tissues Grown in the Lab
Thursday, 2024/06/20 | 06:54:18

Figure: Photo Source: Duke University Pratt School of Engineering

 

Biomedical engineers at Duke University developed an ultrathin silk membrane that can be used in an organ-on-a-chip (OOC) model to mimic the natural environment of cells and tissues within the body. Their findings, published in Science Advances, open new opportunities to improve organs like the brain, liver, and lungs, and contribute to the development of test therapeutics.

 

OOC systems have helped researchers better understand human biology through dynamic modeling of tissue structures, studying organ functions, and modeling diseases. However, the challenge arises with the design of the chips which usually use thick and non-degradable polymer membranes as support structures.

 

The research team used silk fibroin, a protein created by silkworms, to bring the membrane thickness down from 50 microns to five or fewer. “The new microfluidic chip system's ability to simulate in vivo-like tissue-tissue interfaces and induce the formation of specialized cells, such as fenestrated endothelium and mature glomerular podocytes from stem cells, holds significant potential for advancing our understanding of human organ development, disease progression, and therapeutic development,” said Samira Musah, Assistant Professor of Biomedical Engineering.

 

They hope that the technology could help better understand kidney diseases and develop models that identify new biomarkers of the disease. “This could also be used to help us screen for drug candidates for several kidney disease models. The possibilities are very exciting,” said George (Xingrui) Mou, a PhD student and the first author of the paper.

 

For more information, read the article from Duke University Pratt School of Engineering.

See https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=20856

 

Back      Print      View: 202

[ Other News ]___________________________________________________
  • Australia`s Gene Regulator OGTR Invites Comments on Field Trial of GM Perennial Ryegrass
  • Long Lost Chromosome Increases Nitrogen Efficiency of Modern Maize
  • Modified Agrobacterium Strain Useful for Switchgrass Transformation
  • Study Reveals Role of Soybean 14-3-3 Gene on White Mold Resistance
  • CIMMYT Study Says Breeding New Crops Must Adapt to Climate Change
  • Researchers Identify Genes to Help Fruit Adapt to Droughts
  • Kenyans Need to Turn to GM Crops to Combat Drought
  • 28-Million-Year-Old Gene Protects Plants Against Caterpillars
  • Agronomists Find Wheat Varieties Resistant to Enzyme Depletion
  • Root Structure Mapped Out to Identify Components of Drought Stress Tolerance in Rice
  • Scientists Report First use of CRISPR to Substitute Genes to Treat Patients with Cancer
  • Large Chinese Seed Companies Likely to Produce Gene-Edited Crops for Farmers – Study
  • Study Finds CRISPR-Cas9 Leads to Unexpected Genomic Changes
  • Plants Yield Better When Grown Among Genetically Similar Plants
  • Codex Alimentarius: FAO Director-General stresses key role of science and data in the Commission`s work
  • World Food Programme and ICRISAT: working to improve nutrition and build resilience in vulnerable communities
  • From Lab to Farm: Scientific research and its contribution to family farming and rural entrepreneurship
  • Chemists Create Artificial Photosynthesis 10 Times More Efficient than Existing Systems
  • Micro/Nanofluidics and Lab-on-Chip Based Emerging Technologies for Biomedical and Translational Research Applications - Part B
  • Scientists Identify Wheat Genetically Resistant to Fungus Causing Snow Mold

 

Designed & Powered by WEBSO CO.,LTD