Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  63
 Total visitors :  7657242

Scientists tweak photosynthesis to boost crop yield
Saturday, 2016/11/19 | 08:05:30

Researchers report in the journal Science that they can increase plant productivity by boosting levels of three proteins involved in photosynthesis. In field trials, the scientists saw increases of 14 percent to 20 percent in the productivity of their modified tobacco plants. The work confirms that photosynthesis can be made more efficient to increase plant yield, a hypothesis some in the scientific community once doubted was possible.

 

Scientists tweak photosynthesis to boost crop yield

 

 

As computer models predicted, genetically modified plants are better able to make use of the limited sunlight available when their leaves go into the shade, researchers report. Credit: Julie McMahon



Many years of computational analysis and laboratory and field experiments led to the selection of the proteins targeted in the study. The researchers used tobacco because it is easily modified. Now they are focusing on food crops.

 

"We don't know for certain this approach will work in other crops, but because we're targeting a universal process that is the same in all crops, we're pretty sure it will," said University of Illinois plant biology and crop sciences professor Stephen Long, who led the study with postdoctoral researchers Katarzyna Glowacka and Johannes Kromdijk.

 

The team targeted a process plants use to shield themselves from excessive solar energy.

 

"Crop leaves exposed to full sunlight absorb more light than they can use," Long said. "If they can't get rid of this extra energy, it will actually bleach the leaf."

 

Plants protect themselves by making changes within the leaf that dissipate the excess energy as heat, he said. This process is called nonphotochemical quenching.

 

"But when a cloud crosses the sun, or a leaf goes into the shade of another, it can take up to half an hour for that NPQ process to relax," Long said. "In the shade, the lack of light limits photosynthesis, and NPQ is also wasting light as heat."

 

Long and former graduate student Xinguang Zhu used a supercomputer at the National Center for Supercomputing Applications at the U. of I. to predict how much the slow recovery from NPQ reduces crop productivity over the course of a day. These calculations revealed "surprisingly high losses" of 7.5 percent to 30 percent, depending on the plant type and prevailing temperature, Long said.

 

Long's discussions with University of California, Berkeley researcher and study co-author Krishna Niyogi - an expert on the molecular processes underlying NPQ -suggested that boosting levels of three proteins might speed up the recovery process.

 

To test this concept, the team inserted a "cassette" of the three genes (taken from the model plant Arabidopsis) into tobacco.


Read more at: http://phys.org/news/2016-11-scientists-tweak-photosynthesis-boost-crop.html#jCp

 

 

Back      Print      View: 578

[ Other News ]___________________________________________________
  • Egypt Holds Workshop on New Biotech Applications
  • UN Agencies Urge Transformation of Food Systems
  • Taiwan strongly supports management of brown planthopper—a major threat to rice production
  • IRRI Director General enjoins ASEAN states to invest in science for global food security
  • Rabies: Educate, vaccinate and eliminate
  • “As a wife I will help, manage, and love”: The value of qualitative research in understanding land tenure and gender in Ghana
  • CIP Director General Wells Reflects on CIP’s 45th Anniversary
  • Setting the record straight on oil palm and peat in SE Asia
  • Why insect pests love monocultures, and how plant diversity could change that
  • Researchers Modify Yeast to Show How Plants Respond to Auxin
  • GM Maize MIR162 Harvested in Large Scale Field Trial in Vinh Phuc, Vietnam
  • Conference Tackles Legal Obligations and Compensation on Biosafety Regulations in Vietnam
  • Iloilo Stakeholders Informed about New Biosafety Regulations in PH
  • Global wheat and rice harvests poised to set new record
  • GM Maize Harvested in Vietnam Field Trial Sites
  • New label for mountain products puts premium on biological and cultural diversity
  • The Nobel Prize in Physiology or Medicine 2016
  • Shalabh Dixit: The link between rice genes and rice farmers
  • People need affordable food, but prices must provide decent livelihoods for small-scale family farmers
  • GM Seeds Market Growth to Increase through 2020 Due to Rise in Biofuels Use

 

Designed & Powered by WEBSO CO.,LTD